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Abstract
In his paper (1986 Beables for quantum field theory Phys. Rep. 137 49–54)
John S Bell proposed how to associate particle trajectories with a lattice
quantum field theory, yielding what can be regarded as a |�|2-distributed
Markov process on the appropriate configuration space. A similar process
can be defined in the continuum, for more or less any regularized quantum
field theory; we call such processes Bell-type quantum field theories. We
describe methods for explicitly constructing these processes. These concern,
in addition to the definition of the Markov processes, the efficient calculation
of jump rates, how to obtain the process from the processes corresponding to
the free and interaction Hamiltonian alone, and how to obtain the free process
from the free Hamiltonian or, alternatively, from the one-particle process by a
construction analogous to ‘second quantization’. As an example, we consider
the process for a second quantized Dirac field in an external electromagnetic
field.

PACS numbers: 03.65.Ta, 02.50.−r, 03.70.+k
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1. Introduction

The aim of this paper is to present methods for constructing Bell-type quantum field theories
(QFTs). These have in common a good deal of mathematical structure, which we will elucidate.
The primary variables of Bell-type QFTs are the positions of the particles. Bell suggested a
dynamical law, governing the motion of the particles, in which the Hamiltonian H and the
state vector � determine certain jump rates [3]. Since these rates are in a sense the smallest
choice possible, we call them the minimal jump rates. By construction, they preserve the
|�|2 distribution. We assume a well-defined Hamiltonian as given; to achieve this, it is often
necessary to introduce cut-offs. We shall assume that this has been done where needed. In the
cases in which one has to choose between several possible position observables, for example
because of issues related to the Newton–Wigner operator [27, 23], we shall also assume that
a choice has been made.

Bell-type QFTs can also be regarded as extensions of Bohmian mechanics. When one tries
to incorporate particle creation and annihilation into Bohmian mechanics, one is naturally led
to models like the one we presented in [14]. The quantum equilibrium distribution, playing a
central role in Bohmian mechanics, then more or less dictates that creation of a particle occurs
in a stochastic manner—just as in Bell’s model.
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The paper is organized as follows. In section 2 we introduce all the main ideas and
reasoning; a superficial reading should focus on this section. Some examples of Bell-type
QFTs are presented in section 3. (Simple examples of minimal jump rates can be found in
[15].) In section 4 we describe the construction of a process for the free Hamiltonian based on
‘second quantization’. In section 5 we sketch the concept of the ‘minimal process’ associated
with a Hamiltonian H. Section 6 concerns some properties of Bell-type QFTs that derive from
the construction methods developed in this paper. In section 7 we conclude.

2. Ingredients of Bell-type quantum field theories

2.1. Review of Bohmian mechanics and equivariance

Bohmian mechanics [6, 19, 21] is a non-relativistic theory about N point particles moving in
3-space, according to which the configuration Q = (Q1, . . . ,QN) evolves according to the
de Broglie–Bohm law4

dQ

dt
= v(Q), v = h̄ Im

�∗∇�

�∗�
. (1)

� = �t(q) is the wavefunction, which evolves according to the Schrödinger equation

ih̄
∂�

∂t
= H�, (2)

with

H = −h̄2

2
� + V (3)

for spinless particles, with � = div ∇. For particles with spin, � takes values in the appropriate
spin space C

k , V may be matrix valued, and numerator and denominator of (1) have to be
understood as involving inner products in spin space. The key to the success of Bohmian
mechanics in yielding the predictions of standard quantum mechanics is the fact that the
configuration Qt is |�t |2-distributed in configuration space at all times t, provided that the
initial configuration Q0 (part of the Cauchy data of the theory) is so distributed. This property,
called equivariance in [19], suffices for empirical agreement between any quantum theory
(such as a QFT) and any version thereof with additional (often called ‘hidden’) variables Q,
provided the outcomes of all experiments are registered or recorded in these variables. That
is why equivariance will be our guide for obtaining the dynamics of the particles.

The equivariance of Bohmian mechanics follows immediately from comparing the
continuity equation for a probability distribution ρ associated with (1),

∂ρ

∂t
= −div(ρv), (4)

with the equation satisfied by |�|2 which follows from (2),

∂|�|2
∂t

(q, t) = 2

h̄
Im[�∗(q, t)(H�)(q, t)]. (5)

In fact, it follows from (3) that

2

h̄
Im [�∗(q, t)(H�)(q, t)] = −div[h̄ Im�∗(q, t)∇�(q, t)] (6)

4 The masses mk of the particles have been absorbed in the Riemann metric gµν on configuration space
R

3N , gia,jb = miδij δab , i, j = 1, . . . , N, a, b = 1, 2, 3, and ∇ is the gradient associated with gµν , i.e., ∇ =
(m−1

1 ∇q1 , . . . , m
−1
N ∇qN

).
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so, recalling (1), one obtains that

∂|�|2
∂t

= −div(|�|2v), (7)

and hence that if ρt = |�t |2 at some time t then ρt = |�t |2 for all times. Equivariance is an
expression of the compatibility between the Schrödinger evolution for the wavefunction and
the law, such as (1), governing the motion of the actual configuration. In [19], in which we
were concerned only with the Bohmian dynamics (1), we spoke of the distribution |�|2 as
being equivariant. Here we wish to find processes for which we have equivariance, and we
shall therefore speak of equivariant processes and motions.

2.2. Equivariant Markov processes

The study of example QFTs like that of [14] has led us to the consideration of Markov
processes as candidates for the equivariant motion of the configuration Q for Hamiltonians H
more general than those of the form (3).

Consider a Markov process Qt on configuration space. The transition probabilities are
characterized by the backward generator Lt , a (time-dependent) linear operator acting on
functions f on configuration space:

Ltf (q) = d

ds
E(f (Qt+s)|Qt = q) (8)

where d/ds means the right derivative at s = 0 and E(·|·) denotes the conditional expectation.
Equivalently, the transition probabilities are characterized by the forward generator Lt (or, as
we shall simply say, generator), which is also a linear operator but acts on (signed) measures
on the configuration space. Its defining property is that for every process Qt with the given
transition probabilities, the distribution ρt of Qt evolves according to

∂ρt

∂t
= Lt ρt . (9)

Lt is the adjoint of Lt in the sense that∫
f (q)Lt ρ(dq) =

∫
Lt f (q)ρ(dq). (10)

We will use both Lt and Lt , whichever is more convenient. We will encounter several
examples of generators in the subsequent sections.

We can easily extend the notion of equivariance from deterministic to Markov processes.
Given the Markov transition probabilities, we say that the |�|2 distribution is equivariant if
and only if for all times t and t ′ with t < t ′, a configuration Qt with distribution |�t |2 evolves,
according to the transition probabilities, into a configuration Qt ′ with distribution |�t ′ |2. In
this case, we also simply say that the transition probabilities are equivariant, without explicitly
mentioning |�|2. Equivariance is equivalent to

Lt |�t |2 = ∂|�t |2
∂t

(11)

for all t. When (11) holds (for a fixed t) we also say that Lt is an equivariant generator
(with respect to �t and H). Note that this definition of equivariance agrees with the previous
meaning for deterministic processes.

We call a Markov process Q equivariant if and only if for every t the distribution ρt of Qt

equals |�t |2. For this to be the case, equivariant transition probabilities are necessary but not
sufficient. (While for a Markov process Q to have equivariant transition probabilities amounts
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to the property that if ρt = |�t |2 for one time t, where ρt denotes the distribution of Qt , then
ρt ′ = |�t ′ |2 for every t ′ > t , according to our definition of an equivariant Markov process,
in fact ρt = |�t |2 for all t.) However, for equivariant transition probabilities there exists a
unique equivariant Markov process.

Noting that (5) is completely general, the crucial idea for our construction of an equivariant
Markov process is to find a generator Lt such that the right-hand side of (5) can be read as the
action of L on ρ = |�|2,

2

h̄
Im �∗H� = L |�|2. (12)

We shall implement this idea beginning in section 2.6, after a review of jump processes and
some general considerations. But first we shall illustrate the idea with the familiar case of
Bohmian mechanics.

For H of the form (3), we have (6) and hence

2

h̄
Im �∗H� = −div(h̄ Im �∗∇�) = −div

(
|�|2h̄ Im

�∗∇�

|�|2
)

. (13)

Since the generator of the (deterministic) Markov process corresponding to the dynamical
system dQ/dt = v(Q) given by a velocity vector field v is

L ρ = −div(ρv), (14)

we may recognize the last term of (13) as L |�|2 with L the generator of the deterministic
process defined by (1). Thus, as is well known, Bohmian mechanics arises as the natural
equivariant process on configuration space associated with H and �.

To be sure, Bohmian mechanics is not the only solution of (12) for H given by (3).
Among the alternatives are Nelson’s stochastic mechanics [26] and other velocity formulae
[12]. However, Bohmian mechanics is the most natural choice, the one most likely to be
relevant to physics. It is, in fact, the canonical choice, in the sense of minimal process which
we shall explain in section 5.3.

2.3. Equivariant jump processes

Let Q denote the configuration space of the process, whatever sort of space that may be (vector
space, lattice, manifold, etc); mathematically speaking, we need that Q be a measurable space.
A (pure) jump process is a Markov process on Q for which the only motion that occurs is via
jumps. Given that Qt = q, the probability for a jump to q ′, i.e., into the infinitesimal volume
dq ′ about q ′, by time t + dt is σt (dq ′|q) dt , where σ is called the jump rate. In this notation,
σ is a finite measure in the first variable; σ(B|q) is the rate (the probability per unit time) of
jumping to somewhere in the set B ⊆ Q, given that the present location is q. The overall jump
rate is σ(Q|q).

It is often the case that Q is equipped with a distinguished measure, which we shall
denote by dq or dq ′, slightly abusing notation. For example, if Q = R

d , dq may be the
Lebesgue measure, or if Q is a Riemannian manifold, dq may be the Riemannian volume
element. When σ(·|q) is absolutely continuous relative to the distinguished measure, we also
write σ(q ′|q) dq ′ instead of σ(dq ′|q). Similarly, we sometimes use the letter ρ for denoting a
measure and sometimes the density of a measure, ρ(dq) = ρ(q) dq.

A jump first occurs when a random waiting time T has elapsed, after the time t0 at which
the process was started or at which the most recent previous jump has occurred. For purposes
of simulating or constructing the process, the destination q ′ can be chosen at the time of
jumping, t0 + T , with probability distribution σt0+T (Q|q)−1σt0+T (·|q). In case the overall jump
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rate is time independent, T is exponentially distributed with mean σ(Q|q)−1. When the rates
are time dependent—as they will typically be in what follows—the waiting time remains such
that ∫ t0+T

t0

σt (Q|q) dt

is exponentially distributed with mean 1, i.e., T becomes exponential after a suitable (time-
dependent) rescaling of time. For more details about jump processes, see [8].

The generator of a pure jump process can be expressed in terms of the rates,

Lσ ρ(dq) =
∫

q ′∈Q
(σ (dq|q ′)ρ(dq ′) − σ(dq ′|q)ρ(dq)), (15)

a ‘balance’ or ‘master’ equation expressing ∂ρ/∂t as the gain due to jumps into dq minus the
loss due to jumps away from q.

We shall say that jump rates σ are equivariant if Lσ is an equivariant generator. It is
one of our goals in this paper to describe a general scheme for obtaining equivariant jump
rates. In sections 2.6 and 2.7 we will explain how this leads us to the minimal jump rates,
formula (29).

2.4. Process additivity

The Hamiltonian of a QFT usually comes as a sum, such as

H = H0 + HI (16)

with H0 the free Hamiltonian and HI the interaction Hamiltonian. If several particle species
are involved, H0 is itself a sum containing one free Hamiltonian for each species. The left-hand
side of (12), which should govern our choice of the generator, is then also a sum,

2

h̄
Im �∗H0� +

2

h̄
Im �∗HI� = L |�|2. (17)

This opens the possibility of finding a generator L by setting L = L0 + LI , provided we
have generators L0 and LI corresponding to H0 and HI in the sense that

2

h̄
Im �∗H0� = L0|�|2 (18a)

2

h̄
Im �∗HI� = LI |�|2. (18b)

We call this feature of (12) process additivity; it is based on the fact that the left-hand side of
(12) is linear in H. Note that the backward generator of the process with forward generator
L0 + LI is L0 + LI ; thus forward and backward generators lead to the same notion of process
additivity, and to the same process corresponding to H0 + HI . In many cases, as will be
elaborated in section 2.8, H0 is based on an operator known from quantum mechanics (e.g.,
the Dirac operator), in such a way that L0 can be obtained from the appropriate Bohmian law
of motion. In section 2.6 we will explain how LI can usually be taken as the generator of a
jump process.

Our proposal is to take seriously the process generated by L = L0 + LI and regard it as
the process naturally associated with H. The bottom line is that process additivity provides a
method of constructing a Bell-type theory.

Obviously, the mathematical observation of process additivity (that sums of generators
define an equivariant process associated with sums of Hamiltonians) applies not only to the
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splitting of H into a free and an interaction contribution, but to every case where H is a sum.
And it seems that process additivity provides a physically very reasonable process in every
case where H is naturally a sum, in fact the most reasonable process: the one that should be
considered the Bell-type process, defining the Bell-type theory.

2.5. What added processes may look like

To get some feeling of what the addition of generators, L = L1 + L2, means for the
corresponding processes, we consider some examples. First consider two deterministic
processes (on the same configuration space), having generators of the form L ρ = −div(ρv).
To add the generators obviously means to add the velocity vector fields, v = v1 + v2, so the
resulting velocity is a superposition of two contributions.

Next consider a pure jump process. Since, according to (15), the generator L is linear
in σ , adding generators means adding rates, σ = σ1 + σ2. This is equivalent to saying that
there are two kinds of jumps: if the present location is q ∈ Q, with probability σ1(Q|q) dt the
process performs a jump of the first type within the next dt time units, and with probability
σ2(Q|q) dt a jump of the second type. That does not mean, however, that one can decide from
a given realization of the process which jump was of which type.

Next suppose that we add the generators of a deterministic and a jump process,

L ρ(q) = −div(ρv)(q) +
∫

q ′∈Q
(σ (q|q ′)ρ(q ′) − σ(q ′|q)ρ(q)) dq ′. (19)

This process moves with velocity v(q) until it jumps to q ′, where it continues moving, with
velocity v(q ′). The jump rate may vary with time in two ways: first because σ may be time
dependent, second because σ may be position dependent and Qt moves with velocity v. One
can easily understand (19) in terms of gain or loss of probability density due to motion and
jumps. So this process is piecewise deterministic: although the temporal length of the pieces
(the intervals between two subsequent jumps) and the starting points (the jump destinations)
are random, given these data the trajectory is determined.

The generator of the Wiener process in R
d is the Laplacian, and to add to it the generator

of a deterministic process means to introduce a drift. Note that this is different from adding,
in R

d , a Wiener process to a solution of the deterministic process. In spaces like R
d , where

it so happens that one is allowed to add locations, there is a danger of confusing addition of
generators with addition of realizations. Whenever we speak of adding processes, it means
we add generators.

To add generators of a diffusion and a pure jump process yields what is often called a jump
diffusion process, one making jumps with time- and position-dependent rates and following
a diffusion path in between. Diffusion processes, however, will play almost no role in this
paper.

2.6. Integral operators correspond to jump processes

We now address the interaction part HI of the Hamiltonian (16). In QFTs with cut-offs it is
usually the case that HI is an integral operator. For that reason, we shall in this work focus
on integral operators for HI . We now point out why the naturally associated process is a pure
jump process. For short, we will write H rather than HI in this and the subsequent section.
For the time being, think of Q as R

d and of wavefunctions as complex valued.
What characterizes jump processes versus continuous processes is that some amount of

probability that vanishes at q ∈ Q can reappear in an entirely different region of configuration
space, say at q ′ ∈ Q. This is manifest in the equation for ∂ρ/∂t , (15): the first term in the
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integrand is the probability increase due to arriving jumps, the second the decrease due to
departing jumps, and the integration over q ′ reflects that q ′ can be anywhere in Q. This
suggests that Hamiltonians for which expression (5) for ∂|�|2/∂t is naturally an integral over
dq ′ correspond to pure jump processes. So when is the left-hand side of (12) an integral over
dq ′? When H is an integral operator, i.e., when 〈q|H |q ′〉 is not merely a formal symbol, but
represents an integral kernel that exists as a function or a measure and satisfies

(H�)(q) =
∫

dq ′〈q|H |q ′〉�(q ′). (20)

In this case, we should choose the jump rates in such a way that, when ρ = |�|2,

σ(q|q ′)ρ(q ′) − σ(q ′|q)ρ(q) = 2

h̄
Im �∗(q)〈q|H |q ′〉�(q ′), (21)

and this suggests, since jump rates must be non-negative (and the right-hand side of (21) is
anti-symmetric), that

σ(q|q ′)ρ(q ′) =
[

2

h̄
Im �∗(q)〈q|H |q ′〉�(q ′)

]+

(where x+ denotes the positive part of x ∈ R, that is, x+ is equal to x for x > 0 and is zero
otherwise), or

σ(q|q ′) = [(2/h̄) Im �∗(q)〈q|H |q ′〉�(q ′)]+

�∗(q ′)�(q ′)
. (22)

These rates are an instance of what we call the minimal jump rates associated with H (and �).
The name comes from the fact that they are actually the minimal possible values given (21), as
is expressed by the inequality (114) and will be explained in detail in section 5.2. Minimality
entails that at any time t, one of the transitions q1 → q2 or q2 → q1 is forbidden. We will call
the process defined by the minimal jump rates the minimal jump process (associated with H).

In contrast to jump processes, continuous motion, as in Bohmian mechanics, corresponds
to such Hamiltonians that the formal matrix elements 〈q|H |q ′〉 are nonzero only infinitesimally
close to the diagonal, and in particular to differential operators like the Schrödinger
Hamiltonian (3), which has matrix elements of the type δ′′(q − q ′) + V (q)δ(q − q ′). We
can summarize the situation, as a rule of thumb, by the following table:

a contribution to H that is a . . . corresponds to . . .

integral operator jumps
differential operator deterministic continuous motion
multiplication operator no motion (L = 0)

The minimal jump rates as given by (22) have some nice features. The possible jumps for
this process correspond to the nonvanishing matrix elements of H (though, depending on the
state �, even some of the jump rates corresponding to nonvanishing matrix elements of H might
happen to vanish). Moreover, in their dependence on the state �, the jump rates σ depend
only ‘locally’ upon �: the jump rate for a given jump q ′ → q depends only on the values
�(q ′) and �(q) corresponding to the configurations linked by that jump. Discretizing R

3 to
a lattice εZ

3, one can obtain Bohmian mechanics as a limit ε → 0 of minimal jump processes
[33, 34], whereas greater-than-minimal jump rates lead to Nelson’s stochastic mechanics
[26] and similar diffusions, such as (117); see [34, 22]. If the Schrödinger operator (3)
is approximated in other ways by operators corresponding to jump processes, e.g., by
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Hε = e−εH H e−εH , the minimal jump processes presumably also converge to Bohmian
mechanics.

We have reasons to believe that there are lots of self-adjoint operators which do not
correspond to any stochastic process that can be regarded as defined, in any reasonable sense,
by (22)5. But such operators seem never to occur in QFT. (The Klein–Gordon operator√

m2c4 − h̄2c2� does seem to have a process, but it requires a more detailed discussion which
will be provided in a forthcoming work [18].)

2.7. Minimal jump rates

The reasoning of the previous section applies to a far more general setting than just considered:
to arbitrary configuration spacesQ and ‘generalized observables’—POVMs—defining, for our
purposes, what the ‘position representation’ is. We now present this more general reasoning,
which leads to one of the main formulae of this paper, (29).

The process we construct relies on the following ingredients from QFT:

(1) A Hilbert space H with scalar product 〈�|	〉.
(2) A unitary one-parameter group Ut in H with Hamiltonian H,

Ut = e− i
h̄
tH ,

so that in the Schrödinger picture the state � evolves according to

ih̄
d�t

dt
= H�t. (23)

Ut could be part of a representation of the Poincaré group.
(3) A positive-operator-valued measure (POVM) P(dq) on Q acting on H , so that the

probability that the system in the state � is localized in dq at time t is

Pt (dq) = 〈�t |P(dq)|�t 〉. (24)

Mathematically, a POVM P on Q is a countably additive set function (‘measure’), defined
on measurable subsets of Q, with values in the positive (bounded self-adjoint) operators on
(a Hilbert space) H , such that P(Q) is the identity operator6. Physically, for our purposes,
P(·) represents the (generalized) position observable, with values in Q. The notion of POVM
generalizes the more familiar situation of observables given by a set of commuting self-
adjoint operators, corresponding, by means of the spectral theorem, to a projection-valued
measure (PVM): the case where the positive operators are projection operators. A typical
example is the single Dirac particle: the position operators on L2(R3, C

4) induce there a
natural PVM P0(·); for any Borel set B ⊆ R

3, P0(B) is the projection to the subspace of
functions that vanish outside B, or, equivalently, P0(B)�(q) = 1B(q)�(q) with 1B the
indicator function of the set B. Thus, 〈�|P0(dq)|�〉 = |�(q)|2 dq. When one considers
as Hilbert space H only the subspace of positive energy states, however, the localization
probability is given by P(·) = P+P0(·)I with P+ : L2(R3, C

4) → H the projection and
I : H → L2(R3, C

4) the inclusion mapping. Since P+ does not commute with most of the

5 Consider, for example, H = p cos p where p is the one-dimensional momentum operator −ih̄∂/∂q. Its formal
kernel 〈q|H |q ′〉 is the distribution − i

2 δ′(q −q ′ −1)− i
2 δ′(q −q ′ +1), for which (22) would not have a meaning. From

a sequence of smooth functions converging to this distribution, one can obtain a sequence of jump processes with
rates (22): the jumps occur very frequently, and are by amounts of approximately ±1. A limiting process, however,
does not exist.
6 The countable additivity is to be understood as in the sense of the weak operator topology. This in fact implies that
countable additivity also holds in the strong topology.
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operators P0(B), P (·) is no longer a PVM but a genuine POVM7 and consequently does not
correspond to any position operator—although it remains true (for � in the positive energy
subspace) that 〈�|P(dq)|�〉 = |�(q)|2 dq. That is why in QFT, the position observable is
indeed more often a POVM than a PVM. POVMs are also relevant to photons [1, 25]. In
one approach, the photon wavefunction � : R

3 → C
3 is subject to the constraint condition

∇ · � = ∂1�1 + ∂2�2 + ∂3�3 = 0. Thus, the physical Hilbert space H is the (closure of
the) subspace of L2(R3, C

3) defined by this constraint, and the natural PVM on L2(R3, C
3)

gives rise, by projection, to a POVM on H . So much for POVMs. Let us get back to the
construction of a jump process.

The goal is to specify equivariant jump rates σ = σ�,H,P , i.e., such that

Lσ P = dP

dt
. (25)

To this end, one may take the following steps:

(1) Note that

dPt (dq)

dt
= 2

h̄
Im〈�t |P(dq)H |�t 〉. (26)

(2) Insert the resolution of the identity I = ∫
q ′∈Q P(dq ′) and obtain

dPt (dq)

dt
=

∫
q ′∈Q

Jt (dq, dq ′), (27)

where

Jt (dq, dq ′) = 2

h̄
Im〈�t |P(dq)HP (dq ′)|�t 〉. (28)

(3) Observe that J is anti-symmetric, J(dq ′, dq)= −J(dq, dq ′). Thus, since x = x+ − (−x)+,

J(dq, dq ′) = [(2/h̄) Im〈�|P(dq)HP (dq ′)|�〉]+ − [(2/h̄) Im〈�|P(dq ′)HP (dq)|�〉]+.

(4) Multiply and divide both terms by P(·), obtaining∫
q ′∈Q

J(dq, dq ′) =
∫

q ′∈Q

(
[(2/h̄) Im〈�|P(dq)HP (dq ′)|�〉]+

〈�|P(dq ′)|�〉 P(dq ′)

− [(2/h̄) Im〈�|P(dq ′)HP (dq)|�〉]+

〈�|P(dq)|�〉 P(dq)

)
.

(5) By comparison with (15), recognize the right-hand side of the above equation as Lσ P,
with Lσ the generator of a Markov jump process with jump rates

σ(dq|q ′) = [(2/h̄) Im〈�|P(dq)HP (dq ′)|�〉]+

〈�|P(dq ′)|�〉 , (29)

which we call the minimal jump rates.

7 This situation is indeed more general than it may seem. By a theorem of Naimark [11, p 142], every POVM P(·)
acting on H is of the form P(·) = P+P0(·)I where P0 is a PVM on a larger Hilbert space, P+ the projection to H ,
and I the inclusion mapping.
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Mathematically, the right-hand side of this formula as a function of q ′ must be understood as
a density (Radon–Nikodým derivative) of one measure relative to another8. The plus symbol
denotes the positive part of a signed measure; it can also be understood as applying the plus
function, x+ = max(x, 0), to the density, if it exists, of the numerator.

To sum up, we have argued that with H and � is naturally associated a Markov jump
process Qt whose marginal distributions coincide at all times by construction with the quantum
probability measure, ρt (·) = Pt (·), so that Qt is an equivariant Markov process.

In section 4 of [15], we establish precise conditions on H,P and � under which the
jump rates (29) are well defined and finite (almost everywhere with respect to P) and prove
that in this case the rates are equivariant, as suggested by steps (1)–(5) above. It is perhaps
worth remarking at this point that any H can be approximated by Hamiltonians Hn (namely
Hilbert–Schmidt operators) for which the rates (29) are always (for all �) well defined and
equivariant [15]. Concerning this, see also the end of section 5.3.

2.8. Process associated with the free Hamiltonian

We now address the free Hamiltonian H0 of a QFT. We describe the process naturally associated
with H0, when this is the second quantized Schrödinger or Dirac operator. We will treat more
general free Hamiltonians in the next section. We shall consider here only Hamiltonians for
one type of particle.

We first define the configuration space Q. Let us write Q(1) (‘one-particle configuration
space’) for physical space; this is typically, but not necessarily, R

3. The space Q in which the
‘free process’ takes place is the configuration space for a variable number of identical particles;
we call it 
Q(1). It can be defined as the space of all finite subsets-with-multiplicities of Q(1).
A set-with-multiplicities consists of a set and, for each element x of the set, a positive integer,
called the multiplicity of x. The number of particles in a configuration q is the sum of its
multiplicities, #q. Such configurations describe several identical particles, some of which may
be located at the same position in space. Equivalently, one could say that 
Q(1) is the set of

8 Quite aside from the previous discussion, it is perhaps worth noting that there are not so many expressions in H, P

and � that would meet the formal criteria for being a candidate for the jump rate. Since the only connection between
abstract Hilbert space and configuration space is by P , which leads to measures on Q, the only way to obtain a function
on Q is to form a Radon–Nikodým quotient of two measures, σ(q ′) = A(dq ′)/B(dq ′). Since σ must be a measure-
valued function, the numerator should be a bi-measure (a measure in each of two variables). The simplest measure
one can form from H, P and � is 〈�|P(dq)|�〉; the simplest bi-measures are 〈�|Hn1 P(dq)Hn2 P(dq ′)Hn3 |�〉.
Jump rates must have dimension 1/time, and the only object at hand having this dimension is H/h̄. Thus, H can
appear only once in the numerator. The expressions 〈�|HP(dq)P (dq ′)|�〉 and 〈�|P(dq)P (dq ′)H |�〉 are no good
because for PVMs P they are concentrated on the diagonal of Q × Q and hence do not lead to nontrivial jumps. Let
us write µ for the measure-valued function we have arrived at:

µ(dq, q ′) = 1

h̄

〈�|P(dq)HP (dq ′)|�〉
〈�|P(dq ′)|�〉 .

This provides complex measures, whereas σ(·|q ′) must be a positive real measure. There are not many ways of
forming a positive real measure from a complex one, the essential ones being

|µ|, |Re µ|, |Im µ|, (Re µ)+, (Re µ)−, (Im µ)+, (Im µ)−

times a numerical constant λ > 0. One could of course form additional expressions at the price of higher complexity.
This has got us already pretty close to the minimal rates (29), which correspond to σ = 2(Im µ)+. To proceed

further, we might demand the absence of unnecessary jumps, which means that at any time, either the jump q1 → q2
or q2 → q1 is forbidden; this leaves only λ(Im µ)±. Moreover, 2(Im µ)+ is the only expression in the list that has
Bohmian mechanics as a limiting case or implies equivariance. Furthermore, it corresponds to the natural guess (118)
for a backward generator, discussed in section 5.3.
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all mappings n : Q(1) → N ∪ {0} (meaning the number of particles at a given location) such
that ∑

q∈Q(1)

n(q) < ∞.

(Here the summation sign is to be taken literally even when Q(1) is uncountable: the above
condition implies that there are only finitely many locations where n is nonzero.) Another
equivalent definition is the set of all finite non-negative measures n(·) on Q(1) that assume
only integer values; the meaning of n(R) is the number of particles in the region R of physical
space. Finally, one can define


Q(1) =
∞⋃

n=0

Q(n) where Q(n) = (Q(1))n/permutations.

A related space, for which we write 
�=Q(1), is the space of all finite subsets of Q(1); it is
contained in 
Q(1), after obvious identifications. In fact, 
�=Q(1) = 
Q(1)\�, where � is the
set of coincidence configurations, i.e., those having two or more particles at the same position.

�=Q(1) is the union of the spaces Q(n)

�= for n = 0, 1, 2, . . . , where Q(n)
�= is the space of subsets

of Q(1) with n elements.
For Q(1) = R

d , the n-particle sector Q(n)
�= is a manifold of dimension nd (see [13] for

a discussion of Bohmian mechanics on this manifold). If d � 2, the set � of coincidence
configurations has codimension �2 and thus can usually be ignored. We can then replace

R

d by the somewhat simpler space 
�=R
d .

The position POVM P (1) on Q(1) (acting on the one-particle Hilbert space) naturally
leads to a POVM we call 
P (1) on Q = 
Q(1), acting on Fock space (see section 4.2.3 for
the definition)9. Since a configuration from 
R

3 defines the number of particles and their
positions, the name ‘position observable’ for P = 
P (1) stretches the meaning of ‘position’
somewhat: it now also encompasses the number of particles.

We now give a description of the free process associated with the second-quantized
Schrödinger operator; it arises from Bohmian mechanics. Fock space H = F is a direct sum

F =
∞⊕

n=0

F (n), (30)

where F (n) is the n-particle Hilbert space. F (n) is the subspace of symmetric (for bosons)
or anti-symmetric (for fermions) functions in L2(R3n, (C2s+1)⊗n) for spin-s particles. Thus,
� ∈ F can be decomposed into a sequence � = (�(0), �(1), . . . , �(n), . . .), the nth member
�(n) being an n-particle wavefunction, the wavefunction representing the n-particle sector of
the quantum state vector. The obvious way to obtain a process on Q = 
R

3 is to let the
configuration Q(t), containing N = #Q(t) particles, move according to the N-particle version
of the de Broglie–Bohm law (1), guided by �(N)10. This is indeed an equivariant process
since H0 has a block diagonal form with respect to the decomposition (30),

H0 =
∞⊕

n=0

H
(n)
0 ,

9 The coincidence configurations form a null set, 
P (1)(�) = 0, when Q(1) is a continuum, or, more precisely, when
P (1) is nonatomic as a measure.
10 As defined, configurations are unordered, whereas we have written the de Broglie–Bohm law (1) for ordered
configurations. Thanks to the (anti-)symmetry of the wavefunction, however, all orderings will lead to the same
particle motion. For more about such considerations, see our forthcoming work [13].



Topical Review R13

and H
(n)
0 is just a Schrödinger operator for n non-interacting particles, for which, as we already

know, Bohmian mechanics is equivariant. We used a very similar process in [14] (the only
difference being that particles were numbered in [14]).

Similarly, if H0 is the second quantized Dirac operator, we let a configuration Q with N
particles move according to the usual N-particle Bohm–Dirac law [7, p 274]

dQ

dt
= c

�∗(Q)αN�(Q)

�∗(Q)�(Q)
(31)

where c denotes the speed of light and αN = (α(1), . . . ,α(N)) with α(k) acting on the spin
index of the kth particle.

2.9. Other approaches to the free process

We will give below a general velocity formula, applicable to a wider class of free Hamiltonians.
Alternatively, we can provide a free process for any H0 if we are given an equivariant process
for the one-particle Hamiltonian H(1). This is based on the particular mathematical structure
of H0, which can be expressed by stating that it arises from a one-particle Hamiltonian H(1)

by applying a ‘second quantization functor 
’ [29]. That is, there is an algorithm (in a bosonic
or fermionic version) for forming, from a one-particle Hilbert space H (1) and a one-particle
Hamiltonian H(1), a Fock space F = 
H (1) and free Hamiltonian H0 = 
H(1). And parallel
to this ‘second quantization’ algorithm, there is an algorithm for the canonical construction,
from a given equivariant one-particle Markov process Q

(1)
t , of a process we call 
Q

(1)
t that

takes place in Q = 
Q(1) and is equivariant with respect to H0. This algorithm may be called
the ‘second quantization’ of a Markov process.

The algorithm is described in section 4.2. What the algorithm does is essentially
constructing an n-particle version of Q

(1)
t for every n, and finally combining these by means

of a random particle number N = N(t) = #Q(t) which is constant under the free process,
parallel to the fact that the particle number operator is conserved by H0. We note further that
the process 
Q

(1)
t is deterministic if Q

(1)
t is. If we take the one-particle process to be Bohmian

mechanics or the Bohm–Dirac motion, the algorithm reproduces the processes described in
the previous section.

The algorithm leaves us with the task of finding a suitable one-particle law, which we
do not address in this paper. For some Hamiltonians, such as the Dirac operator, this is
immediate, for others it is rather nontrivial, or even unsolved. The Klein–Gordon operator√

m2c4 − h̄2c2� will be discussed in forthcoming work [18], and for a study of photons see
[28].

When H0 is made of differential operators of up to second order (which includes of
course the Schrödinger and Dirac operators), there is another way to characterize the process
associated with H0, a way which allows a particularly succinct description of the process and
a particularly direct derivation and construction. In fact, we give a formula for its backward
generator L0, or alternatively the velocity (or the forward generator L0), in terms of H0, P

and �.
We begin by defining, for any H,P and �, an operator L acting on functions f : Q → R,

which may or may not be the backward generator of a process, by

Lf (q) = Re
〈�|P(dq)L̂f̂ |�〉

〈�|P(dq)|�〉 = Re
〈�|P(dq) i

h̄
[H, f̂ ]|�〉

〈�|P(dq)|�〉 , (32)

where [ , ] means the commutator,

f̂ =
∫

q∈Q
f (q)P (dq), (33)
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and L̂ is the ‘generator’ of the (Heisenberg) time evolution of the operator f̂ ,

L̂f̂ = d

dτ
eiHτ/h̄f̂ e−iHτ/h̄

∣∣∣∣
τ=0

= i

h̄
[H, f̂ ]. (34)

(If P is a PVM, then f̂ = f (q̂), where q̂ is the configuration operator.) Equation (32) could
be guessed in the following way: since Lf is in a certain sense, see (8), the time derivative
of f , it might be expected to be related to L̂f̂ , which is in a certain sense, see (34), the time
derivative of f̂ . As a way of turning the operator L̂f̂ into a function Lf (q), the middle term
in (32) is an obvious possibility. Note that this way of arriving at (32) does not make use of
equivariance; for another way that does, see section 5.1.

The formula for the forward generator equivalent to (32) reads

L ρ(dq) = Re〈�| d̂ρ

dP

i

h̄
[H,P (dq)]|�〉, (35)

as follows from (10).
Whenever L is indeed a backward generator, we call it the minimal free (backward)

generator associated with �,H and P . (The name is based on the concept of minimal process
as explained in section 5.3.) Then the corresponding process is equivariant (see section 5.1).
This is the case if (and, there is a reason to expect, only if ) P is a PVM and H is a differential
operator of up to second order in the position representation, in which P is diagonal. In that
case, the process is deterministic, and the backward generator has the form L = v · ∇ where v

is the velocity vector field; thus, (32) directly specifies the velocity, in the form of a first-order
differential operator v · ∇. In case H is the N-particle Schrödinger operator with or without
spin, (32) yields the Bohmian velocity (1), and if H is the Dirac operator, the Bohm–Dirac
velocity (31). To sum up, in some cases definition (32) leads to just the right backward
generator.

To return to our starting point: if the one-particle generator L (1) arises from the one-
particle Hamiltonian H(1) by (35), then (35) also holds between the free generator L0 = 
L (1)

and the free Hamiltonian H0 = 
H(1). (See section 5.1 for details.) In other words, (32) is
compatible with the ‘second quantization’ algorithm. Thus, in relevant cases (32) allows a
direct definition of the free process in terms of H0, just as (29) directly defines, in terms of
HI , the jump rates.

A relevant point is that the ‘second quantization’ of a differential operator is again a
differential operator, in a suitable sense, and has the same order. Note also that (32), when
applied to the second-quantized Schrödinger or Dirac Hamiltonian, defines the same vector
field on 
R

3 as described in the previous section.

2.10. Bell-type QFT

We briefly summarize what we have obtained. A Bell-type QFT is about particles moving in
physical 3-space; their number and positions are represented by a point Qt in configuration
space Q. Provided physical space is R

3,Q is usually 
R
3 or a Cartesian product of several

such spaces, each factor representing a different particle species. Qt follows a Markov process
in Q, which is governed by a state vector � in a suitable Hilbert space H . H is related to Q
by means of a PVM or POVM P . � undergoes a unitary evolution with Hamiltonian H. The
process Qt usually consists of deterministic continuous trajectories interrupted by stochastic
jumps; more generally, it arises by process additivity (i.e., by adding generators) from a free
process associated with H0 and a jump process associated with HI . The jump rates are given
by (29) for H = HI . The free process arises from Bohmian mechanics, or a suitable analogue,
by a construction that can be formalized as the ‘second quantization’ of a one-particle Markov
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process; when appropriate, it is defined directly by (32). The process Qt is equivariant, i.e.,
〈�t |P(dq)|�t 〉 distributed.

Examples of Bell-type QFTs can be found in [3, 14] and in section 3. It is our contention
that, essentially, there is a unique Bell-type version of every regularized QFT. We have to
postpone, however, the discussion of operators of the Klein–Gordon type. We also have to
assume that the QFT provides us with the POVM P(·); this is related to an ongoing discussion
in the literature [27, 25, 23] concerning the right position operator.

2.11. More on identical particles

The n-particle sector of the configuration space (without coincidence configurations) of
identical particles 
�=R

3 is the manifold of n-point subsets of R
3; let Q be this manifold.

The most common way of describing the quantum state of n fermions is by an anti-symmetric
(square-integrable) wavefunction � on Q̂ := R

3n; let H be the space of such functions.
Whereas for bosons � could be viewed as a function on Q, for fermions � is not a function
on Q.

Nonetheless, the configuration observable still corresponds to a PVM P on Q: for B ⊆ Q,
we set P(B)�(q1, . . . , qn) = �(q1, . . . , qn) if {q1, . . . , qn} ∈ B and zero otherwise. In other
words, P(B) is multiplication by the indicator function of π−1(B) where π is the obvious
projection mapping Q̂\� → Q, with � the set of coincidence configurations.

To obtain other useful expressions for this PVM, we introduce the formal kets |q̂〉 for
q̂ ∈ Q̂ (to be treated like elements of L2(Q̂)), the anti-symmetrization operator S (i.e., the
projection L2(Q̂) → H ), the normalized anti-symmetrizer11 s = √

n!S, and the formal kets
|sq̂〉 := s|q̂〉 (to be treated like elements of H ). The |q̂〉 and |sq̂〉 are normalized in the sense
that

〈q̂|q̂ ′〉 = δ(q̂ − q̂ ′) and 〈sq̂|sq̂ ′〉 = (−1)�(q̂,q̂ ′)δ(q − q ′),
where q = π(q̂), q ′ = π(q̂ ′), �(q̂, q̂ ′) is the permutation that carries q̂ into q̂ ′ given that
q = q ′, and (−1)� is the sign of the permutation �. Now we can write

P(dq) =
∑

q̂∈π−1(q)

|q̂〉〈q̂| dq = n!S|q̂〉〈q̂| dq = |sq̂〉〈sq̂| dq, (36)

where the sum is over the n! ways of numbering the n points in q; the last two terms actually
do not depend on the choice of q̂ ∈ π−1(q), the numbering of q.

The probability distribution arising from this PVM is

P(dq) =
∑

q̂∈π−1(q)

|�(q̂)|2 dq = n!|�(q̂)|2 dq = |〈sq̂|�〉|2 dq (37)

with arbitrary q̂ ∈ π−1(q).
There is a way of viewing fermion wavefunctions as being defined on Q, rather than R

3n,
by regarding them as cross sections of a particular one-dimensional vector bundle over Q. To
this end, define an n!-dimensional vector bundle E by

Eq :=
⊕

q̂∈π−1(q)

C. (38)

Every function � : R
3n → C naturally gives rise to a cross section 	 of E, defined by

	(q) :=
⊕

q̂∈π−1(q)

�(q̂). (39)

11 The name means this: since S is a projection, S� is usually not a unit vector when � is. Whenever � ∈ L2(Q̂) is
supported by a fundamental domain of the permutation group, i.e., by a set � ⊆ Q̂ on which (the restriction of ) π is
a bijection to Q, the norm of S� is 1/

√
n!, so that s� is again a unit vector.
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The anti-symmetric functions form a one-dimensional subbundle of E (see also [13] for a
discussion of this bundle).

3. Application to simple models

In this section, we point out how the jump rates of the model in [14] are contained in (29) and
present a full-fledged Bell-type QFT for the second-quantized Dirac equation in an external
classical electromagnetic field.

Further cut-off QFTs that may provide interesting examples of Bell-type QFTs, worth a
detailed discussion in a future work [17], are the scalar self-interacting field (e.g., 	4), QED,
and other gauge field theories. We have to postpone the treatment of these theories because
they require discussions lying outside the scope of this paper, in particular a discussion of
the position representation of photon wavefunctions in QED, and, concerning 	4, of the
appropriate probability current for the Klein–Gordon equation.

3.1. A simple QFT

We presented a simple example of a Bell-type QFT in [14], and we will now briefly point to
the aspects of this model that are relevant here. The model is based on one of the simplest
possible QFTs [32, p 339].

The relevant configuration space Q for a QFT (with a single-particle species) is the
configuration space of a variable number of identical particles in R

3, which is the set 
R
3,

or, ignoring the coincidence configurations (as they are exceptions), the set 
�=R
3 of all finite

subsets of R
3. The n-particle sector of this is a manifold of dimension 3n; this configuration

space is thus a union of (disjoint) manifolds of different dimensions. The relevant configuration
space for a theory with several particle species is the Cartesian product of several copies of

�=R

3. In the model of [14], there are two particle species, a fermion and a boson, and thus
the configuration space is

Q = 
�=R
3 × 
�=R

3. (40)

We will denote configurations by q = (x, y) with x the configuration of the fermions and y

the configuration of the bosons.
For simplicity, we replaced in [14] the sectors of 
�=R

3 × 
�=R
3, which are manifolds, by

vector spaces of the same dimension (by artificially numbering the particles), and obtained the
union

Q̂ =
∞⋃

n=0

(R3)n ×
∞⋃

m=0

(R3)m, (41)

with n the number of fermions and m the number of bosons. Here, however, we will use (40)
as the configuration space, since we have already discussed the space 
�=R

3. In comparison
with (41), this amounts to (merely) ignoring the numbering of the particles.

H is the tensor product of a fermion Fock space and a boson Fock space, and thus the
subspace of wavefunctions in L2(Q̂) that are anti-symmetric in the fermion coordinates and
symmetric in the boson coordinates. Let S denote the appropriate symmetrization operator,
i.e., the projection operator L2(Q̂) → H , and s the normalized symmetrizer

s�(x1, . . . ,xn,y1, . . . ,ym) =
√

n!m!S�(x1, . . . ,xn,y1, . . . ,ym), (42)

i.e., s = √
N !M!S with N and M the fermion and boson number operators, which commute

with S and with each other. As in section 2.11, we denote by π the projection mapping
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Q̂\� → Q, π(x1, . . . ,xn,y1, . . . ,ym) = ({x1, . . . ,xn}, {y1, . . . ,ym}). The configuration
PVM P(B) on Q is multiplication by 1π−1(B), which can be understood as acting on H ,
though it is defined on L2(Q̂), since it is permutation invariant and thus maps H to itself.
We utilize again the formal kets |q̂〉 where q̂ ∈ Q̂\� is a numbered configuration, for which
we also write q̂ = (x̂, ŷ) = (x1, . . . ,xn,y1, . . . ,ym). We also use the symmetrized and
normalized kets |sq̂〉 = s|q̂〉. As in (36), we can write

P(dq) =
∑

q̂∈π−1(q)

|q̂〉〈q̂| dq = n!m!S|q̂〉〈q̂| dq = |sq̂〉〈sq̂| dq (43)

with arbitrary q̂ ∈ π−1(q). For the probability distribution, we thus have, as in (37),

P(dq) =
∑

q̂∈π−1(q)

|�(q̂)|2 dq = n!m!|�(q̂)|2 dq = |〈sq̂|�〉|2 dq (44)

with arbitrary q̂ ∈ π−1(q).
The free Hamiltonian is the second-quantized Schrödinger operator (with zero potential),

associated with the free process described in section 2.8. The interaction Hamiltonian is
defined by

HI =
∫

d3x ψ †(x)
(
a†

ϕ(x) + aϕ(x)
)
ψ(x) (45)

with ψ †(x) the creation operators (in position representation), acting on the fermion Fock
space, and a†

ϕ(x) the creation operators (in position representation), acting on the boson Fock
space, regularized through convolution with an L2 function ϕ : R

3 → R. HI has a kernel;
we will now obtain a formula for it, see (51) below. The |sq̂〉 are connected to the creation
operators according to

|sq̂〉 = ψ †(xn) · · · ψ †(x1)a
†(ym) · · · a†(y1)|0〉, (46)

where |0〉 ∈ H denotes the vacuum state. A relevant fact is that the creation and annihilation
operators ψ †, ψ, a† and a possess kernels. Using the canonical (anti-)commutation relations
for ψ and a, one obtains from (46) the following formulae for the kernels of ψ(r) and
a(r), r ∈ R

3,

〈sq̂|ψ(r)|sq̂ ′〉 = δn,n′−1δm,m′δ3n′
(x ∪ r − x ′)(−1)�((x̂,r),x̂ ′)δ3m(y − y ′) (47)

〈sq̂|a(r)|sq̂ ′〉 = δn,n′δm,m′−1δ
3n(x − x ′)(−1)�(x̂,x̂ ′)δ3m′

(y ∪ r − y ′) (48)

where (x, y) = q = π(q̂), and �(x̂, x̂ ′) denotes the permutation that carries x̂ to x̂ ′ given that
x = x ′. The corresponding formulae for ψ † and a† can be obtained by exchanging q̂ and q̂ ′

on the right-hand sides of (47) and (48). For the smeared-out operator aϕ(r), we obtain

〈sq̂|aϕ(r)|sq̂ ′〉 = δn,n′δm,m′−1δ
3n(x − x ′)(−1)�(x̂,x̂ ′)

∑
y′∈y ′

δ3m(y − y ′\y′)ϕ(y′ − r). (49)

We make use of the resolution of the identity

I =
∫
Q

dq|sq̂〉〈sq̂|. (50)

Inserting (50) twice into (45) and exploiting (47) and (49), we find

〈sq̂|HI |sq̂ ′〉 = δn,n′δm−1,m′δ3n(x − x ′)(−1)�(x̂,x̂ ′)
∑
y∈y

δ3m′
(y\y − y ′)

∑
x∈x

ϕ(y − x)

+ δn,n′δm′−1,mδ3n(x − x ′)(−1)�(x̂,x̂ ′)
∑
y′∈y ′

δ3m(y − y ′\y′)
∑
x∈x

ϕ(y′ − x). (51)
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By (43), the jump rates (29) are

σ(q|q ′) =
[

2
h̄

Im〈�|sq̂〉〈sq̂|HI |sq̂ ′〉〈sq̂ ′|�〉]+

〈�|sq̂ ′〉〈sq̂ ′|�〉 . (52)

More explicitly, we obtain from (51) the rates

σ(q|q ′) = δnn′δm−1,m′δ3n(x − x ′)
∑
y∈y

δ3m′
(y\y − y ′)σcrea(q

′ ∪ y|q ′)

+ δnn′δm,m′−1δ
3n(x − x ′)

∑
y′∈y ′

δ3m(y − y ′\y′)σann(q
′\y′|q ′) (53)

with

σcrea(q
′ ∪ y|q ′) = 2

√
m′ + 1

h̄

[
Im �∗(q̂)(−1)�(x̂,x̂ ′) ∑

x′∈x ′ ϕ(y − x′)�(q̂ ′)
]+

�∗(q̂ ′)�(q̂ ′)
(54a)

σann(q
′\y′|q ′) = 2

h̄
√

m′

[
Im �∗(q̂)(−1)�(x̂,x̂ ′) ∑

x′∈x ′ ϕ(y′ − x′)�(q̂ ′)
]+

�∗(q̂ ′)�(q̂ ′)
, (54b)

for arbitrary q̂ ′ ∈ π−1(q ′) and q̂ ∈ π−1(q) with q = (x ′, y ′ ∪ y) respectively q = (x ′, y ′\y′).
(Note that a summation sign can be drawn out of the plus function if the terms have disjoint
supports.)

Equation (53) is worth looking at closely: one can read off that the only possible jumps
are (x ′, y ′) → (x ′, y ′ ∪ y), creation of a boson, and (x ′, y ′) → (x ′, y ′\y′), annihilation of a
boson. In particular, while one particle is created or annihilated, the other particles do not
move. The process that we considered in [14] consists of pieces of Bohmian trajectories
interrupted by jumps with rates (53); the process is thus an example of the jump rate
formula (29), and an example of combining jumps and Bohmian motion by means of process
additivity.

The example shows how, for other QFTs, the jump rates (29) can be applied to relevant
interaction Hamiltonians: if HI is, in the position representation, a polynomial in the creation
and annihilation operators, then it possesses a kernel on the relevant configuration space. A
cut-off (implemented here by smearing out the creation and annihilation operators) needs to
be introduced to make HI a well-defined operator on L2.

If, in some QFT, the particle number operator is not conserved, jumps between the sectors
of configuration space are inevitable for an equivariant process. And, indeed, when HI does
not commute with the particle number operator (as is usually the case), jumps can occur that
change the number of particles. Often, HI contains only off-diagonal terms with respect to
the particle number; then every jump will change the particle number. This is precisely what
happens in the model of [14].

3.2. Efficient calculation of rates in the previous example

We would like to give another, refined way of calculating the explicit jump rates (53) from
the definition (45) of HI . The calculation above is rather cumbersome, partly because of all
the δ. It is also striking that only very few transitions q ′ → q are actually possible, which
suggests that it is unnecessary to write down a formula for the kernel 〈q|HI |q ′〉 valid for all
pairs q, q ′. Rather than writing down all the δ terms as in (53), it is easier to specify the
possible transitions q ′ → q and to write down the rates, such as (54a) and (54b), only for
these transitions. Thus, for a more efficient calculation of the rates, it is advisable to first
determine the possible transitions, and then we need keep track only of the corresponding
kernel elements.
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3.2.1. A diagram notation. To formulate this more efficient strategy, it is helpful to regard
� as a cross section of a fibre bundle E over the Riemannian manifold Q, or of a countable
union E = ⋃

i E
(i) of bundles E(i) over Riemannian manifolds Q(i) with Q = ⋃

i Q(i). (In
the present example, with Q given by (40), we take i to be the pair (n,m) of particle numbers,
Q(n,m) to be the (n,m)-particle sector, and E(i) to be defined by (38) (with π the natural
projection from Q̂\�, with Q̂ given by (41), to Q). The q̂ ∈ π−1(q) can be viewed as defining
an orthonormal basis of Eq .)

A key element of the strategy is a special diagram notation for operators. The operators
we have in mind are HI and its building blocks, the field operators. The strategy will start with
the diagrams for the field operators, and obtain from them a diagram for HI . The diagram will
specify, for an operator O, what the kernel of O is, while leaving out parts of the kernel that
are zero. So let us assume that O has kernel 〈q|O|q ′〉, i.e., (O�)(q) = ∫ 〈q|O|q ′〉�(q ′) dq ′.
The diagram

q ′ K(q ′,λ)−−−−→
O

F(q ′, λ) (55)

may be read as ‘according to O, the possible transitions from q ′ are to F(q ′, λ), and are
associated with the amplitudes K(q ′, λ)’. It means that the operator O has kernel constructed
from F and K,

〈q|O|q ′〉 =
∫

�

dλ δ(q − F(q ′, λ))K(q ′, λ), (56)

where λ varies in some parameter space �,F : Q × � → Q, and K is a function (or
distribution) of q ′ and λ such that K(q ′, λ) : Eq ′ → EF(q ′,λ) is a C-linear mapping.

The role of λ is to parametrize the possible transitions; e.g., for the boson creation (54a)
in the previous section, λ would be the position y of the new boson, and � = R

3. The notation
(55) does not explicitly mention what � and the measure dλ are; this will usually be clear
from the context of the diagram. The measure dλ will usually be a uniform distribution over
the parameter space �, such as Lebesgue measure if � = R

d or the counting measure if � is
finite or countably infinite. We may also allow having a different �q ′ for every q ′.

When O = H , a jump from q ′ can lead only to those q for which q = F(q ′, λ) for some
value of λ, and the corresponding jump rate (29) is

σ(F (q ′, λ)|q ′) = [(2/h̄) Im �∗(F (q ′, λ))K(q ′, λ)�(q ′)]+

�∗(q ′)�(q ′)
, (57)

provided that for given q ′, F (q ′, ·) is an injective mapping. Here, σ(q|q ′) is the density of the
measure σ(dq|q ′) with respect to the measure on Q

µq ′(dq) =
∫

�

dλ δ(q − F(q ′, λ)) dq, (58)

where δ(q − q0) dq denotes the measure on Q with total weight 1 concentrated at q0.
The measure (58), the image of dλ under the map F(q ′, ·), is concentrated on the set
{F(q ′, λ) : λ ∈ �} of possible destinations and plays the role of the ‘uniform distribution’
over this set. In other words, (57) is the rate of occurrence, with respect to dλ, of the transition
corresponding to λ. (For the boson creation rate (54a), µq ′(dq) turns out the Lebesgue measure
in y on the subset {q ′ ∪ y : y ∈ R

3\q ′} ⊆ Q.)
Given O, the choice of �,F and K is not unique. One could always choose

� = Q, F (q ′, q) = q and K(q ′, q) = 〈q|O|q ′〉, which of course would mean to miss
the point of this notation. The case that F and K do not depend on a parameter λ is formally
contained in the scheme (56) by taking � to be a one-point set (and dλ the counting measure);
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in this case (56) means

〈q|O|q ′〉 = δ(q − F(q ′))K(q ′). (59)

Conversely, whenever #� = 1, the dependence of F and K on the parameter λ is irrelevant.
A basic advantage of the notation (55), compared to writing down a formula for 〈q|O|q ′〉,

is that many δ factors become unnecessary. For example, if O is multiplication by V (q), then
(� is a one-point set and) we have the diagram

q ′ V (q ′)−−−→
O

q ′.

3.2.2. Operations with diagrams. For the product O2O1 of two operators given by diagrams,
we have the diagram

q ′ K2(F1(q
′,λ1),λ2)K1(q

′,λ1)−−−−−−−−−−−−−−−→
O2O1

F2(F1(q
′, λ1), λ2) (60)

with parameter space �1 × �2, for which we also write

q ′ K1(q
′,λ1)−−−−−→

O1

F1(q
′, λ1)

K2(F1(q
′,λ1),λ2)−−−−−−−−−→

O2

F2(F1(q
′, λ1), λ2). (61)

We thus define the concatenation of two diagrams by means of the composition of the transition
mappings and the product of the amplitudes, i.e., using obvious notation,

q1
α→ q2

β→ q3 means q1
αβ→ q3. (62)

Thus, multiplication of operators corresponds to concatenation of diagrams.
For the sum O1 + O2 of two operators given by diagrams with the same parameter space

�1 = �2 = � and the same transition mapping F1(q
′, λ) = F2(q

′, λ) = F(q ′, λ), we have
the diagram

q ′ K1(q
′,λ)+K2(q

′,λ)−−−−−−−−−→
O1+O2

F(q ′, λ). (63)

3.2.3. Diagrams of creation and annihilation operators. We now write down diagrams for
creation and annihilation operators. In the case that O = O(r) arises from formally evaluating
an operator-valued distribution O(x) at x = r, the dependence of K(q ′, λ) on λ is in the
sense of distributions rather than functions. More precisely, we have

K(q ′, λ) = D(q ′, λ)K0(q
′, λ) (64)

where D is a (real-valued) distribution on Q×�, and K0 a mapping-valued function such that
for every q ′ and λ,K0(q

′, λ) is a linear mapping Eq ′ → EF(q ′,λ).
For ψ †(r) and ψ(r), r ∈ R

3, we have (recall that x ′ is a finite subset of R
3)

(x ′, y ′)
αf−−−−→

ψ†(r)
(x ′ ∪ r, y ′) (#� = 1) (65a)

(x ′, y ′)
δ(x′−r)εf−−−−−→

ψ(r)
(x ′\x′, y ′) (� = x ′, λ = x′) (65b)

using linear mappings αf : Eq ′ → E(x ′∪r,y ′) (‘append a fermion’) and εf : Eq ′ → E(x ′\x′,y ′)
(‘erase a fermion’), which can be regarded as the natural mappings between these fibre spaces.
They are defined through the following properties,

αf� is appropriately symmetrized (66a)

(αf�)((x̂ ′, r), ŷ ′) = 1√
n′ + 1

�(x̂ ′, ŷ ′) (66b)

(εf�)(x̂, ŷ ′) =
√

n′�((x̂,x′), ŷ ′) (66c)
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where � ∈ Eq ′ , and x̂ is an arbitrary ordering of the set x = x ′\x′. (Recall that the set π−1(q ′)
of the possible orderings of q ′ forms a basis of Eq ′ , so that every ordering (x̂ ′, ŷ ′) = q̂ ′ ∈
π−1(q ′) corresponds to a particular component of �. Thus, ((x̂ ′, r), ŷ ′) ∈ π−1(x ′ ∪ r, y ′)
corresponds to a particular component in E(x ′∪r,y ′).)

For the smeared-out creation and annihilation operators a†
ϕ(r) and aϕ(r), we have

(x ′, y ′)
ϕ(y−r)αb−−−−−→

a
†
ϕ(r)

(x ′, y ′ ∪ y) (� = R
3, λ = y) (67a)

(x ′, y ′)
ϕ(y′−r)εb−−−−−→

aϕ(r)
(x ′, y ′\y′) (� = y ′, λ = y′) (67b)

where αb (‘append a boson’) and εb (‘erase a boson’) are the analogous linear mappings
relating different spaces, αb : Eq ′ → E(x ′,y ′∪y) and εb : Eq ′ → E(x ′,y ′\y′), defined by the
following properties,

αb� is appropriately symmetrized (68a)

(αb�)(x̂ ′, (ŷ ′,y)) = 1√
m′ + 1

�(x̂ ′, ŷ ′) (68b)

(εb�)(x̂ ′, ŷ) =
√

m′�(x̂ ′, (ŷ,y′)), (68c)

where ŷ is an arbitrary ordering of the set y = y ′\y′, x̂ ′ one of x ′, ŷ ′ one of y ′, and � ∈ Eq ′ .

3.2.4. Application of the diagram method. Now let us apply the strategy to the example (45)
of the previous section. For ψ †(r)a†

ϕ(r)ψ(r), we have the diagram

q ′ δ(x′−r)εf−−−−−→
ψ(r)

(x ′\x′, y ′)
ϕ(y−r)αb−−−−−→

a
†
ϕ(r)

(x ′\x′, y ′ ∪ y)
αf−−−→

ψ†(r)
(x ′\x′ ∪ r, y ′ ∪ y)

with � = x ′ × R
3. Using the concatenation rule (62), we can write instead

q ′ δ(x′−r)ϕ(y−r)αfαbεf−−−−−−−−−−−→
ψ†(r)a

†
ϕ(r)ψ(r)

(x ′\x′ ∪ r, y ′ ∪ y).

Integrating over dr, we obtain, since x ′\x′ ∪ r may be replaced by x ′, which is independent
of x′,

q ′
∑

x′∈x′ ϕ(y−x′)αfαbεf−−−−−−−−−−−→∫
drψ†(r)a

†
ϕ(r)ψ(r)

(x ′, y ′ ∪ y), (69)

with � = R
3. We have now taken care of one of the two terms in (45), involving a† rather

than a. From (69) we read off, without a big calculation, that this term corresponds to jumps
(x ′, y ′) → (x ′, y ′ ∪ y), or creation of a boson. The corresponding jump rate is given by (57),
and reads here

σ(x ′, y ′ ∪ y|q ′) = 2

h̄

[
Im �∗(x ′, y ′ ∪ y)

∑
x′∈x ′ ϕ(y − x′)αfαbεf�(q ′)

]+

�∗(q ′)�(q ′)
. (70)

This result agrees with (54a)12.

12 Here is why: first, �∗(q ′)�(q ′) = n′!m′!�∗(q̂ ′)�(q̂ ′) because the inner product in Eq ′ involves summation over
all q̂ ′ ∈ π−1(q ′). Similarly, the square bracket in the numerator of (70) involves the inner product of E(x′,y′∪y′),
consisting of n′!(m′ + 1)! contributions. The numberings q̂ and q̂ ′ in (54a) can be so chosen that x̂ = x̂′, x′ gets the
last place of x̂′, and ŷ = ŷ′ ∪ y′; then �(x̂, x̂′) is trivial, and αfαbεf�(q̂) = (n′)−1/2(m′ + 1)−1/2(n′)1/2�(q̂ ′). Thus,
the square bracket in (70) is n′!m′!

√
m′ + 1 times the square bracket in (54a).
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We treat the term
∫

dr ψ †(r)aϕ(r)ψ(r) in the same way: we begin with the diagram

q ′ δ(x′−r)εf−−−−−→
ψ(r)

(x ′\x′, y ′)
ϕ(y′−r)εb−−−−−→

aϕ(r)
(x ′\x′, y ′\y′)

αf−−−→
ψ†(r)

(x ′\x′ ∪ r, y ′\y′)

with � = x ′ × y ′. Then we integrate over dr and obtain the associated jump rate

σ(x ′, y ′\y′|q ′) = 2

h̄

[
Im �∗(x ′, y ′\y′)

∑
x′∈x ′ ϕ(y′ − x′)αfεbεf�(q ′)

]+

�∗(q ′)�(q ′)
, (71)

which agrees with (54b). Finally, HI (the sum of both contributions) corresponds according to
(29) to jumps which, since the two contributions have no transitions q ′ → q in common (or, in
other words, since their kernels have disjoint supports in Q×Q), are either q ′ → (x ′, y ′ ∪y),
with rate (70), or q ′ → (x ′, y ′\y′), with rate (71).

3.3. Pair creation in an external field

As our second example, we present the Bell-type version of a reasonable and often used QFT
of electrons and positrons, in which the electromagnetic field is a background field [31]. The
Bell-type version exhibits pair creation and annihilation (in the literal sense) and employs
various notions we have introduced: process additivity, the configuration space 
�=R

3 of a
variable number of identical particles, the free process, POVMs which are not PVMs and
stochastic jumps.

3.3.1. Fock space and Hamiltonian. We consider the second quantized Dirac field in an
electromagnetic background field Aµ(x, t). In terms of field operators, the Hamiltonian reads

H =
∫

d3x : 	∗(x)[−ich̄α · ∇ + βmc2 + e(α · A + A0)]	(x):, (72)

with colons denoting normal ordering. Note that H is time dependent due to the time
dependence of Aµ(x, t); more precisely, HI is time dependent while H0 is fixed. As a
consequence, the relevant jump rate (29) is now time dependent in three ways: through HI ,
through � and through q ′ = Qt .

We quickly recall what the Hilbert space and the field operators are, and specify what
POVM we use. After that, we construct the associated process.

The Hilbert space L2(R3, C
4) of the Dirac equation is split into the orthogonal sum

H+ ⊕ H− of the positive and negative energy subspaces of the free Dirac operator,

h0 = −ich̄α · ∇ + βmc2.

The 1-electron Hilbert space He and the 1-positron Hilbert space Hp are copies of H+, and
the Fock space F = 
H (1) arises then from the one-particle Hilbert space H (1) = He ⊕Hp

in the usual manner: with the anti-symmetrization operator ‘Anti’,

F =
∞⊕

N=0

Anti((He ⊕ Hp)
⊗N), (73)

which can be naturally identified with

H := Fe ⊗ Fp =
∞⊕

n=0

Anti
(
H ⊗n

e

) ⊗
∞⊕

ñ=0

Anti
(
H ⊗ñ

p

)
. (74)

Since H+ ⊆ L2(R3, C
4),H can be understood as a subspace of

Hext :=
∞⊕

n=0

Anti(L2(R3, C
4)⊗n) ⊗

∞⊕
ñ=0

Anti(L2(R3, C
4)⊗ñ). (75)
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We choose the POVM and configuration space in the way suggested by the form (74),
rather than (73),

Q = 
�=R
3 × 
�=R

3, (76)

where the first factor represents electrons and the second positrons. (Recall from section 2.8
that 
�=R

3 denotes the space of all finite subsets of R
3. Another interesting possibility,

suggested by the representation (73), is to set Q = 
�=R
3. This would mean that, insofar as the

configuration is concerned, electrons and positrons are not distinguished. However, we will
not pursue this possibility here.) The natural POVM P (see sections 4.2.3 and 2.11) can be
expressed as an extension from rectangular sets (the existence of such an extension is proved
in section 4.4 of [15]),

P(Be × Bp) = 
P (1)(Be) ⊗ 
P (1)(Bp)

with P (1) the POVM on H+ that we considered before, arising by projection from the natural
PVM on L2(R3, C

4). Alternatively, P can be viewed as arising, by projection to H , and from
Q̂ = ⋃∞

n=0(R
3)n × ⋃∞

ñ=0(R
3)̃n to Q, of the natural PVM on Q̂ acting on Hext. Note that P

represents the usual |�|2 distribution in the sense that for a configuration q with electrons at
x1, . . . ,xn and positrons at x̃1, . . . , x̃ñ, we have

P(dq) = 〈�|P(dq)|�〉 = n!̃n!|�(n,̃n)(x1, . . . , x̃ñ)|2 dx1 · · · dx̃ñ

where �(n,̃n) is just the wavefunction (R3)n+̃n → (C4)⊗(n+̃n) that we get when we decompose
the state vector in the manner suggested by (75). � is normalized so that

∞∑
n,̃n=0

∫
dx1 · · · dx̃ñ|�(n,̃n)(x1, . . . , x̃ñ)|2 = 1.

The field operator is defined by

	(f ) = b(P+f ) + d∗(CP−f ) (77)

where f is a test function from L2(R3, C
4), P± is the projection to H± ⊆ L2(R3, C

4), C is
the charge conjugation operator which maps H− to H+ and vice versa, and b is the electron
annihilation and d∗ the positron creation operator. Letting ei be the standard orthonormal
basis of C

4, i = 1, 2, 3, 4,	(x) stands for 	i(x) = 	(eiδ(· − x)), where i gets contracted
with the α matrices. Similarly, we define, as usual,

bi(x) = b(P+(eiδ(· − x))) (78a)

and

di(x) = d(CP−(eiδ(· − x))). (78b)

We thus have 	i(x) = bi(x) + d∗
i (x).

3.3.2. The associated process. We now describe the associated Markov process. The free
part of (72),

H0 =
∫

d3x : 	∗(x)[−ich̄α · ∇ + βmc2]	(x) :,

preserves particle numbers (it commutes with the electron and positron number operators),
evolving the (n, ñ)-particle sector of the Fock space according to the free (n, ñ)-particle
Hamiltonian

H
(n,̃n)
0 =

n∑
k=1

h
(k)
0 +

ñ∑
k̃=1

h̃
(̃k)
0 ,
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with

h
(k)
0 = −ich̄α(k) · ∇k + β(k)mc2

h̃
(̃k)
0 = −ich̄α̃(̃k) · ∇̃k̃ + β̃ (̃k)mc2,

where α(k) and β(k) act on the kth electron index in the tensor product representation (74) and
α̃(̃k) and β̃ (̃k) on the k̃th positron index. ∇̃k̃ is the gradient with respect to x̃k̃ .

With H0 is associated a deterministic motion of the configuration in Q, the free process
introduced in section 2.8. During this motion, the actual numbers N, Ñ of electrons and
positrons remain constant, while the positions (X1, . . . ,XN, X̃1, . . . , X̃ Ñ ) =: Q move
according to Bohm–Dirac velocities (31), i.e.

Ẋk = c
�∗(Q)α(k)�(Q)

�∗(Q)�(Q)
(79a)

˙̃X k̃ = c
�∗(Q)α̃(̃k)�(Q)

�∗(Q)�(Q)
(79b)

where numerators and denominators are scalar products in (C4)⊗(N+Ñ).
We turn now to the interaction part. Setting A = α · eA + eA0, we have that

HI =
∫

d3x : 	∗(x)A(x)	(x): (80a)

=
4∑

i,j=1

∫
d3x : (b∗

i (x) + di(x))Ai,j (x)(bj (x) + d∗
j (x)): (80b)

=
4∑

i,j=1

∫
d3x(b∗

i (x)Ai,j (x)bj (x) + di(x)Ai,j (x)bj (x)

+ b∗
i (x)Ai,j (x)d∗

j (x) − d∗
j (x)Ai,j (x)di(x)). (80c)

Since HI is a polynomial in creation and annihilation operators, it possesses a kernel and
corresponds to stochastic jumps. To compute the rates, we apply the strategy developed in
section 3.2, using diagrams. To this end, we regard fermionic wavefunctions again as cross
sections of a bundle E, defined here by

Eq =
⊕

q̂∈π−1(q)

(C4)⊗n ⊗ (C4)⊗ñ. (81)

Fermionic symmetry of a cross section � of E means that

�

�(i1...in),̃�(ı̃1...ı̃̃n)

(�(x1 . . . xn), �̃(x̃1 . . . x̃ñ)) = (−1)�(−1)̃��

i1...in,ı̃1...ı̃̃n

(x1 . . . xn, x̃1 . . . x̃ñ) (82)

(where the upper symbols are superscripts to �) for all permutations � ∈ Sn and �̃ ∈ Sñ.
The diagrams for b∗

i (x), bi(x), d∗
i (x) and di(x) are

(x ′, x̃ ′)
∑

j S+
j

i (x
′−x)αe(ej )−−−−−−−−−−−→

b∗
i (x)

(x ′ ∪ x′, x̃ ′) (83a)

(x ′, x̃ ′)
∑

j S+
j

i (x
′−x)εe(ej )−−−−−−−−−−→

bi (x)
(x ′\x′, x̃ ′) (83b)
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(x ′, x̃ ′)
∑

j S−
j

i (x̃
′−x)αp(ej )−−−−−−−−−→

d∗
i (x)

(x ′, x̃ ′ ∪ x̃′) (83c)

(x ′, x̃ ′)
∑

j S−
j

i (x̃
′−x)εp(ej )−−−−−−−−−→

di (x)
(x ′, x̃ ′\x̃′) (83d )

where the matrix function S+
i
j (x) is defined as the j -component of P+(eiδ(·)), and S−i

j (x) as
the j -component of CP−(eiδ(·)). The linear mappings αe(ej ) : Eq ′ → E(x ′∪x′ ,̃x ′) (‘append an
electron with spinor ej ’) and εe(ej ) : Eq ′ → E(x ′\x′ ,̃x ′) (‘erase an electron, contracting with
spinor ej ’) are defined through their properties that for � ∈ Eq ′ ,

αe� is appropriately symmetrized (84a)

(αe(ej )�)((x̂ ′,x′), ˆ̃x ′) = 1√
n′ + 1

�(x̂ ′, ˆ̃x ′) ⊗ ej (84b)

(εe(ej )�)(x̂, ˆ̃x ′) =
√

n′�j((x̂,x′), ˆ̃x ′), (84c)

where x̂ is an arbitrary ordering of x = x ′\x′, x̂ ′ one of x ′, and ˆ̃x ′ one of x̃ ′. We refer to
the last electron slot when writing the tensor product or taking the j -component. αp(ej ) and
εp(ej ) are defined analogously.

For the four terms in (80c), we thus get the four diagrams (omitting the multiplication by
Ai,j (x)),

(x ′, x̃ ′)
∑

k S+
k
j (x

′−x)εe(ek)−−−−−−−−−→
bj (x)

(x ′\x′, x̃ ′)
∑

� S+
�
i (x

′′−x)αe(e�)−−−−−−−−−−−→
b∗

i (x)
(x ′\x′ ∪ x′′, x̃ ′) (85a)

(x ′, x̃ ′)
∑

k S+
k
j (x

′−x)εe(ek)−−−−−−−−−−−→
bj (x)

(x ′\x′, x̃ ′)
∑

� S−�
i (x̃

′−x)εp(e�)−−−−−−−−−−−→
di (x)

(x ′\x′, x̃ ′\x̃′) (85b)

(x ′, x̃ ′)
∑

k S−k
j (x̃

′−x)αp(ek)−−−−−−−−−−−→
d∗

j (x)
(x ′, x̃ ′ ∪ x̃′)

∑
� S+

�
i (x

′−x)αe(e�)−−−−−−−−−→
b∗

i (x)
(x ′ ∪ x′, x̃ ′ ∪ x̃′) (85c)

(x ′, x̃ ′)
∑

k S−k
i (x̃

′−x)εp(ek)−−−−−−−−−−−→
di (x)

(x ′, x̃ ′\x̃′)
∑

� S−�
j (x̃

′′−x)αp(e�)−−−−−−−−−−−→
d∗

j (x)
(x ′, x̃ ′\x̃′ ∪ x̃′′). (85d )

We read off that the first term corresponds to the jump of a single electron from x′ to x′′,
while all other particles remain where they were, the second to the annihilation of an electron–
positron pair at locations x′ and x̃′, the third to the creation of an electron–positron pair at
locations x′ and x̃′, and the last to the jump of a positron from x̃′ to x̃′′. The corresponding
jump rates are

σe(x
′\x′ ∪ x′′, x̃ ′|q ′) = [(2/h̄)Im �∗(q)

∑
k,� χk,�

e (x′,x′′)αe(e�)εe(ek)�(q ′)]+

�∗(q ′)�(q ′)
(86a)

σann(x
′\x′, x̃ ′\x̃′|q ′) = [(2/h̄) Im �∗(q)

∑
k,� χk,�

ann(x
′, x̃′)εp(e�)εe(ek)�(q ′)]+

�∗(q ′)�(q ′)
(86b)

σcrea(x
′ ∪ x′, x̃ ′ ∪ x̃′|q ′) = [(2/h̄) Im �∗(q)

∑
k,� χk,�

crea(x
′, x̃′)αe(e�)αp(ek)�(q ′)]+

�∗(q ′)�(q ′)
(86c)

σp(x
′, x̃ ′\x̃′ ∪ x̃′′|q ′) = [(2/h̄) Im �∗(q)

∑
k,� χk,�

p (x̃′, x̃′′)αp(e�)εp(ek)�(q ′)]+

�∗(q ′)�(q ′)
, (86d )
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where q denotes the respective destination, and

χk,�
e (x′,x′′) =

∑
i,j

∫
d3x S+

�
i (x

′′ − x)Ai,j (x)S+
k
j (x

′ − x) (87a)

χk,�
ann(x

′, x̃′) =
∑
i,j

∫
d3x S−�

i (x̃
′ − x)Ai,j (x)S+

k
j (x

′ − x) (87b)

χk,�
crea(x

′, x̃′) =
∑
i,j

∫
d3x S+

�
i (x

′ − x)Ai,j (x)S−k
j (x̃

′ − x) (87c)

χk,�
p (x̃′, x̃′′) = −

∑
i,j

∫
d3x S−�

j (x̃
′′ − x)Ai,j (x)S−k

i (x̃
′ − x). (87d )

The process for H0 +HI that we obtain through process additivity is the motion (79) interrupted
by stochastic jumps with rates (86).

Note that the jump of a single electron has small probability to be across a distance much
larger than the width of the functions S±, which is of the order of the Compton wavelength
of the electron. Similarly, the distance |x − x̃| of a newly created pair, or of a pair at the
moment of annihilation, has small probability to be much larger than the width of S±. While
the jump of a single electron or positron leaves the number N of electrons and the number Ñ of
positrons unchanged, pair creation and annihilation can only either decrease or increase both
N and Ñ by 1. As a consequence, the actual net charge eÑ − eN is conserved by the process.

4. Second quantization of a Markov process

4.1. Preliminaries concerning the conditional density matrix

In the next section, we describe the algorithm for the ‘second quantization’ of a process.
But before that, we have to introduce, as a preparation, the notion of a conditional density
matrix. In [19], we have defined for Bohmian mechanics the conditional wavefunction
of, say, subsystem 1 of a composite system with configuration space Q = Q1 × Q2 by
�cond(q1) = �(q1,Q2). From a complex wavefunction � : Q → C, together with the
actual configuration Q2 of the environment of the subsystem in the composite, we thus form
a wavefunction �cond : Q1 → C; for Bohmian mechanics with spin, in contrast, we would
not, in general, obtain a suitable wavefunction for subsystems in this way, because �cond as
just defined would have more spin indices than appropriate. We can, however, still define the
conditional density matrix for subsystem 1,

Wcond s1,s
′
1
(q1, q

′
1) = 1

γ

∑
s2

�s1,s2(q1,Q2)�
∗
s ′

1,s2
(q ′

1,Q2) (88)

where the s are spin indices. In order that W , like any density matrix, have trace 1, the
normalizing factor γ must be chosen as

γ =
∫

q1∈Q1

∑
s1,s2

�∗
s1,s2

(q1,Q2)�s1,s2(q1,Q2) dq1.

This W can play most of the roles of the conditional wavefunction in spinless Bohmian
mechanics. The notion of a conditional density matrix easily generalizes from the situation
just described, corresponding to wavefunctions in L2(Q, C

k) and the natural localization PVM,
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to the situation of any product localization POVM on any tensor product Hilbert space: for
H = H1 ⊗ H2 and P(dq1 × dq2) = P1(dq1) ⊗ P2(dq2), set

Wcond = Tr2(|�〉〈�|P(Q1 × dq2))

Tr(|�〉〈�|P(Q1 × dq2))

∣∣∣∣
q2=Q2

, (89)

where Tr2 is the partial trace over H2. The quotient is to be understood as a Radon–Nikodým
derivative in q2. Like conditional wavefunctions, conditional density matrices cannot be
defined in orthodox quantum theory, for the lack of configuration Q2. We stress that conditional
density matrices have nothing, absolutely nothing, to do with statistical ensembles of state
vectors in H1. Like any density matrix, they do, however, define a probability distribution
on Q1,

P
Wcond
1 (·) = Tr(WcondP1(·)), (90)

which coincides with the conditional distribution of Q1 given Q2,

P(Q1 ∈ ·|Q2) = 〈�|P1(·) ⊗ P2(dq2)|�〉
〈�|1 ⊗ P2(dq2)|�〉

∣∣∣∣
q2=Q2

.

The evolution of Wcond is not autonomous; it will typically depend on (and always be
determined by) �t and Q2,t . For a given density matrix W of a system that is not regarded as
a subsystem, however, one can define (as usual) the time evolution by Wt = e−iHt/h̄W eiHt/h̄,
which gives rise to a time-dependent distribution P

Wt (·) = Tr(WtP (·)). We call a Markov
process that is P

Wt -distributed at every time t equivariant with respect to W and H. Given the
right initial distribution, this is equivalent to the following condition on the generator:

L P
W(·) = 2

h̄
Im Tr(WP(·)H). (91)

This is the version of (12) for density matrices, and defines an equivariant generator with
respect to W and H.

Since conditional density matrices will play a crucial role in the construction of the many-
particle process, we require that, as part of the input data of the algorithm, we are given an
equivariant generator L (1)

W for every density matrix from a dense subset of the density matrices
on H (1). This is not much of a restriction, as all relevant examples of equivariant generators
naturally extend to density matrices: Bohmian mechanics with spin space C

k can be extended
[4] to

vW (q) = h̄ Im
∇q TrC

kW(q, q ′)
TrC

kW(q, q ′)
(q ′ = q), (92)

Bohm–Dirac to

vW (q) = TrC
4(W(q, q)α)

TrC
4(W(q, q))

, (93)

and minimal jump rates to

σW(dq|q ′) = [(2/h̄) Im Tr(WP(dq)HP (dq ′))]+

Tr(WP(dq ′))
. (94)

Note also that (92) would not make any sense if W represented a statistical ensemble [4],
whereas it makes good sense for conditional density matrices, expressing the true relation
between the Bohmian velocity for a subsystem arising from (1) and the conditional density
matrix (88) of that subsystem. Mutatis mutandis the same is true of (93). Similarly, in the
case that P is a PVM, (94) expresses the jump rates for a decoupled subsystem arising from
(29) for the composite in terms of the conditional density matrix of that subsystem.
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4.2. Algorithm

The input data of this algorithm are the one-particle Hilbert space H (1), configuration space
Q(1), POVM P (1), and a family of generators L (1) = L (1)

W labelled by the density matrices
W from a dense subset of the density matrices on H (1). The output is a family of generators

L (1) = L0 = L0,� labelled by the state vectors � in (a dense subspace of ) Fock space.
If L (1)

W is equivariant with respect to W and H(1), then L0,� is equivariant with respect to �

and H0.
The algorithm is based on two procedures for suitably combining generators for direct

sums or tensor products of Hilbert spaces.

4.2.1. Direct sums. Given a finite or countable sequence of Hilbert spaces H (n) with POVMs
P (n) on configuration spaces Q(n), and for each n a family of generators L (n) labelled by the
vectors in H (n), there is a canonically constructed family of generators L ⊕ = L ⊕

� , labelled
by the vectors in the direct sum

⊕
n H (n). The space Q in which the corresponding process

takes place is the disjoint union of the Q(n). If every L (n)
�n

is equivariant with respect to
�n ∈ H (n) and H(n), then L ⊕

� is equivariant with respect to � ∈ ⊕
n H (n) and

⊕
n H (n).

Here are the details. The POVM P = ⊕
n P (n) on Q that naturally arises from the data is

given by P(B) = ⊕
n P (n)(B ∩ Q(n)) for B ⊆ Q. Let Pn denote the projection H → H (n).

The generator L ⊕ is given by(
L ⊕

� ρ
)∣∣

Q(n) = L (n)
Pn�/‖Pn�‖(ρ|Q(n) ). (95)

It generates a (Markov) process Q⊕
t such that when Q⊕

0 ∈ Q(n), it is generated by the state
vector Pn�/‖Pn�‖, i.e., it is a Markov process Q

(n)
t in Q(n) generated by L (n)

Pn�/‖Pn�‖. The
equivariance statement follows directly, since ‖Pn�t‖2 = Pt (Q(n)) is invariant under the
evolution generated by H0 = ⊕

n H (n).

4.2.2. Tensor products. Given a finite sequence of Hilbert spaces H [1], . . . ,H [n] with
POVMs P [i] on configuration spaces Q[i], and for each i a family of generators L [i] = L [i]

Wi

labelled by the density matrices on H [i], there is a canonically constructed family of generators
L ⊗ = L ⊗

W , labelled by the density matrices on the tensor product H [1] ⊗ · · · ⊗ H [n].
The corresponding process takes place in the Cartesian product Q = Q[1] × · · · × Q[n].
If every L [i]

Wi
is equivariant with respect to the density matrix Wi on H [i] and the

Hamiltonian H [i], then L ⊕
W is equivariant with respect to W on H [1] ⊗ · · · ⊗ H [n] and

H = ∑
i 1 ⊗ · · · ⊗ H [i] ⊗ · · · ⊗ 1 = ∑

i Hi .
Here are the details. The POVM that naturally arises from the data is13

P(dq1 × · · · × dqn) = P [1](dq1) ⊗ · · · ⊗ P [n](dqn). (96)

For any q ∈ Q, let qi denote its ith component and let q̂i = (q1, . . . , qi−1, qi+1, . . . , qn). For
every i and q̂i , define

Wi(̂qi) = Tr �=i (WP (dq1 × · · · × Q[i] × · · · × dqn))

Tr(WP(dq1 × · · · × Q[i] × · · · × dqn))
,

where Tr �=i is the partial trace over all factors except H [i]. This Wi is the conditional density
matrix, regarded as a function of the configuration q̂i of the other particles. Now consider the
process on Q according to which the ith particle moves as prescribed by L [i]

Wi
while the other

particles remain fixed. The generator of this process is

Liρ := [
L [i]

Wi (̂qi )
ρ(·|̂qi)

]
ρ�=i (d̂qi) (97)

13 The existence of the tensor product POVM is a consequence of corollary 7 in section 4.4 of [15].
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where ρ�=i is the marginal distribution of Q̂i (i.e., ρ integrated over qi) and ρ(·|̂qi) is the
conditional distribution of Qi given Q̂i = q̂i ; the square bracket is a function of q̂i and a
measure in dqi . Now define L ⊗

W ρ = ∑
i Liρ.

To see that L ⊗ is equivariant when the L [i] are, we have to check (91). Note first that
P

W(dqi |̂qi) = Tr(Wi (̂qi)P
[i](dqi )). Due to the equivariance of L [i], for ρ = P

W the square
bracket in (97) equals (2/h̄)Im Tr(Wi (̂qi)P

[i](dqi )H
[i]), from which we obtain (91) for Li

and Hi and hence for L ⊗ and H.
The definition of L ⊗ reproduces the many-particles Bohm law (1) with or without

spin from the one-particle version (or, for distinguishable particles, from several different
one-particle versions having different masses and spins). Similarly, it reproduces the many-
particles Bohm–Dirac law (31) from the one-particle version.

4.2.3. Second quantization of the POVM. Let Q(n) denote the space of all subsets-with-
multiplicities of Q(1) having n elements (counting in the multiplicities). P (1) naturally
defines a POVM P (1)⊗n on (Q(1))n acting on H (1)⊗n by P (1)⊗n(dq1 × · · · × dqn) =
P (1)(dq1) ⊗ · · · ⊗ P (1)(dqn), and a POVM P (n) on Q(n) acting on F (n) = P±H (1)⊗n (the
n-particle sector of Fock space, with P± the projection to the subspace of (anti-)symmetric
elements of H (1)⊗n, depending on whether we deal with fermions or bosons) by

P (n)(B) = P (1)⊗n{(q1, . . . , qn) ∈ (Q(1))n : {q1, . . . , qn} ∈ B}
for B ⊆ Q(n), where {q1, . . . , qn} should be understood as a set-with-multiplicities14. Since
P (n)(B) is invariant under permutations, it maps symmetric to symmetric and anti-symmetric
to anti-symmetric elements of H (1)⊗n and thus acts on F (n) for bosonic or fermionic Fock
space15. The corresponding POVM on Q is then P = 
P (1) = ⊕

n P (n); more precisely, for
B ⊆ Q,

P(B) =
∞⊕

n=0

P (n)(B ∩ Q(n)).

4.2.4. Construction of the free process. Equipped with the two procedures for direct sums
and tensor products, we complete the construction of the free process.

The ‘tensor product’ procedure above provides a process on (Q(1))n from n identical
copies of L (1). For a state vector �(n) ∈ F (n) = P±H (1)⊗n from either the symmetric or the
anti-symmetric elements of the n-fold tensor product space, let W be the projection to �(n);
the generator L ⊗

W is permutation invariant because the tensor-product construction of L ⊗
W is

permutation covariant and a permutation can at most change the state vector by a minus sign,
which does not affect the density matrix. Consequently, the ordering of the configuration is
irrelevant and may be ignored. We thus obtain a process on Q(n) whose generator we call
L (n). We now apply the ‘direct sum’ procedure to obtain a process on Q.

5. Towards a notion of minimal process

In this section, we investigate the common traits of the Markov processes relevant to Bell-type
QFT, which can be summarized in the notion of a minimal process associated with �,H

14 This agrees with the definition given in section 3.1 for the case of a PVM and the coincidence configurations
removed from the configuration space.
15 In case that P (1) is nonatomic, P (n) can equivalently be defined in the following way: for the set � of coincidence
configurations we set P (n)(�) = 0, and for volumes dq1, . . . , dqn in Q(1) that are pairwise disjoint, we have a
corresponding volume dq in Q(n), which can be obtained from dq1 × · · ·× dqn ⊆ (Q(1))n by forgetting the ordering,
and we set P (n)(dq) = n!P±P (1)(dq1) ⊗ · · · ⊗ P (1)(dqn)P±.
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and P . We begin with a closer study of the minimal free generator (32), and then explain why
we call the minimal jump rates ‘minimal’. Finally, in section 5.3, we give an outlook on the
notion of minimal process.

5.1. Free process from differential operators

In this section, we discuss some of the details, concerning the two equivalent formulae (32)
and (35) for the backward and forward version of the minimal free generator in terms of H,P

and �, that we omitted in section 2.9. To begin with, L as defined by (32) satisfies some
necessary conditions for being a backward generator: Lf (q) is real, and L1 = 0 where 1 is
the constant 1 function (this corresponds to L ρ(Q) = 0, or conservation of total probability).
In case L is indeed a backward generator, the corresponding process is equivariant because

L P(dq)
(35)= Re 〈�|1̂ i

h̄
[H,P (dq)]|�〉 = 2

h̄
Im〈�|P(dq)H |�〉 (26)= Ṗ(dq).

One way to arrive at formula (32) has been described in section 2.9. A different
way, leading to (35), is to start from the ansatz L ρ = A

dρ

dP
where A denotes a (signed-

measure-valued) linear operator acting on functions. Equivariance means A1(dq) =
〈�| i

h̄
[H,P (dq)]|�〉. This suggests Af (dq) = 〈�|f̂ i

h̄
[H,P (dq)]|�〉, or Af (dq) =

〈�| i
h̄

[H,P (dq)]f̂ |�〉, or a convex combination thereof. Since Af (dq) must be real,
we are forced to choose the combination with coefficients 1

2 and 1
2 , or equivalently

Af (dq) = Re 〈�|f̂ i
h̄

[H,P (dq)]|�〉, which is (35).
That L generates a deterministic process (when it is a generator at all) is suggested by

the following consideration—at least when H and P are time-reversal invariant: replacing �

in (35) by T � where T is the anti-linear time-reversal operator (see section 6.1) changes the
sign of L . The only generators L such that −L is also a generator are, presumably, those
corresponding to deterministic motion.

This gives us an opportunity to check for which H (32) does define a process: for a
deterministic process we must have L = v · ∇ where v is the velocity vector field. It is known
that operators of this form, first-order differential operators, are precisely those linear operators
L on the space of smooth functions that satisfy the Leibniz rule L(fg) = f Lg + gLf . Since
(32) is linear in f , we have to check the Leibniz rule to see whether L is indeed of the form
v · ∇ and thus the backward generator of a process.

We can see no reason why L should satisfy a Leibniz rule unless P is a PVM, which
implies that

f̂ P (dq) = f (q)P (dq), (98)

and H is such that for all (nice) functions f and g,

[[H, f̂ ], ĝ] = ĥ (99)

for some function h, which holds if H is a differential operator of order �2. (If H = −�, then
h = −2∇f ·∇g; if H = −iα ·∇ for whatever vector of matrices α, or if H is a multiplication
operator, then h = 0.) To check that the Leibniz rule is obeyed in this case, note that we
then have that [H, f̂g] = [H, f̂ ĝ] = [H, f̂ ]ĝ + f̂ [H, ĝ] = f̂ [H, ĝ] + ĝ[H, f̂ ] +

[
[H, f̂ ], ĝ

]
.

Using this in (32), we find that, due to (98), the first two terms give the Leibniz rule, whereas
the last term, due to (99), does not contribute to the real part in (32).

When H is an L2 space over Q and P the natural PVM, i.e., when � is a function, (32)
can be written in the form

Lf (q) = 1

h̄
Im

�∗(q)([f̂ , H ]�)(q)

�∗(q)�(q)
(100)
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where f̂ is the multiplication operator corresponding to f . From this, one easily reads off the
Bohm velocity (1) for the N-particle Schrödinger operator (3) with or without spin. Similarly,
we get the Bohm–Dirac theory when H is the Dirac operator in H = Anti L2(R3, C

4)⊗N,Q
the manifold of subsets of R

3 with N elements, and P the obvious PVM. Equation (100) also
leads to the Bohm–Dirac motion if H = L2(R3, C

4)⊗N,Q = R
3N , and P is the natural

PVM, but not if H is the positive energy subspace because then the appropriate POVM P is
no longer a PVM.

To see that the ‘second quantization’ algorithm maps minimal free generators to minimal
free generators, or, in other words, preserves the relation (35) between Hamiltonian and
generator, observe first that (35) naturally extends to density matrices, and the extension, if
a generator, is equivariant. Next check that the ‘direct sum’ and ‘tensor product’ procedures
of section 4.2 are compatible with (35) when P is a PVM. Finally, observe that the (anti-)
symmetrization operator commutes with the n-particle Hamiltonian, with P(B) for every
permutation invariant set B ⊆ (Q(1))n, and with f̂ for every permutation invariant function
f : (Q(1))n → R.

5.2. Minimality

In this section, we explain in what sense the minimal jump rates (29), or (22), are minimal.
In so doing, we will also explain the significance of the quantity J defined in (28), and clarify
the meaning of the steps taken in sections 2.6 and 2.7 to arrive at the jump rate formulae.

Given a Markov process Qt on Q, we define the net probability current jt at time t
between sets B and B ′ by

jt (B, B ′) = lim
�t↘0

1

�t
[Prob{Qt ∈ B ′,Qt+�t ∈ B} − Prob{Qt ∈ B,Qt+�t ∈ B ′}]. (101)

This is the amount of probability that flows, per unit time, from B ′ to B minus the amount
from B to B ′. For a pure jump process, we have that

jt (B, B ′) =
∫

q ′∈B ′
σt (B|q ′)ρt (dq ′) −

∫
q∈B

σt (B
′|q)ρt (dq), (102)

so that

jt (B, B ′) = jσ,ρ(B × B ′) (103)

where jσ,ρ is the signed measure, on Q × Q, given by the integrand of (15),

jσ,ρ(dq × dq ′) = σ(dq|q ′)ρ(dq ′) − σ(dq ′|q)ρ(dq). (104)

For minimal jump rates σ , defined by (29) or (22) (and with the probabilities ρ given by (24),
ρ = P), this agrees with (28), as was noted earlier,

jσ,ρ = J�,H,P , (105)

where we have made explicit the fact that J is defined in terms of the quantum entities �,H

and P . Note that both J and the net current j are anti-symmetric, J
tr = −J and j tr = −j , the

latter by construction and the former because H is Hermitian. (Here tr indicates the action on
measures of the transposition (q, q ′) �→ (q ′, q) on Q × Q.) The property (105) is stronger
than the equivariance of the rates σ,Lσ Pt = dPt /dt : since, by (15),

(Lσ ρ)(dq) = jσ,ρ(dq × Q), (106)

and, by (28),

dP

dt
(dq) = J(dq × Q), (107)
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the equivariance of the jump rates σ amounts to the condition that the marginals on both sides
of (105) agree,

jσ,ρ(dq × Q) = J(dq × Q). (108)

In other words, what is special about processes with rates satisfying (105) is that not only
the single-time distribution but also the current is given by a standard quantum theoretical
expression in terms of H,� and P . That is why we call (105) the standard-current property—
defining standard-current rates and standard-current processes.

Though the standard-current property is stronger than equivariance, it alone does not
determine the jump rates, as already remarked in [2, 30]. This can perhaps be best appreciated
as follows: note that (104) expresses jσ,ρ as twice the anti-symmetric part of the (non-negative)
measure

C(dq × dq ′) = σ(dq|q ′)ρ(dq ′) (109)

on Q × Q whose right marginal C(Q × dq ′) is absolutely continuous with respect to ρ.
Conversely, from any such measure C the jump rates σ can be recovered by forming the
Radon–Nikodým derivative

σ(dq|q ′) = C(dq × dq ′)
ρ(dq ′)

. (110)

Thus, given ρ, specifying σ is equivalent to specifying such a measure C.
In terms of C, the standard-current property becomes (with ρ = P)

2 Anti C = J. (111)

Since (recalling that J = J
+ − J

− is anti-symmetric)

J = 2 Anti J
+, (112)

an obvious solution to (111) is

C = J
+,

corresponding to the minimal jump rates. However, (105) fixes only the anti-symmetric part
of C. The general solution to (111) is of the form

C = J
+ + S (113)

where S(dq×dq ′) is symmetric, since any two solutions to (111) have the same anti-symmetric
part, and S � 0, since S = C ∧ C tr, because J

+ ∧ (J+)tr = 0.
In particular, for any standard-current rates, we have that

C � J
+, or σ(dq|q ′) � J

+(dq × dq ′)
P(dq ′)

. (114)

Thus, among all jump rates consistent with the standard-current property, one choice,
distinguished by equality in (114), has the least frequent jumps, or the smallest amount
of stochasticity: the minimal rates (29).

5.3. Minimal processes

We have considered in this paper minimal jump processes, i.e., jump processes with rates
(29), associated with integral operators H. There is a more general notion of minimal process,
such that there is a minimal process associated with every Hamiltonian from a much wider
class than that of integral operators; a class presumably containing all Hamiltonians relevant
to QFT. This will be discussed in detail in a forthcoming work [16].
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Bohmian mechanics is, in this sense, the minimal process associated with the Schrödinger
Hamiltonian (3). The minimal process associated with an integral operator is the jump process
with minimal rates. When the minimal free generator (32) exists, i.e., when (32) is a generator,
it generates the minimal process associated with H. The minimal process associated with the
Hamiltonian of a QFT is the one we have obtained in this paper by means of process additivity.
The concept of minimal process directly provides, perhaps always, the process relevant to a
Bell-type QFT.

To begin to convey the notion of the minimal process, we generalize the standard-current
property (cf section 5.2) from pure jump processes to general Markov processes: the net
probability current j of a Markov process defines a bilinear form

jt (f, g) = lim
�t↘0

1

�t
E(f (Qt+�t)g(Qt) − f (Qt)g(Qt+�t)) = (g, Ltf ) − (f, Ltg) (115)

where Lt is its backward generator, and ( , ) on the right-hand side means the scalar product
of L2(Q, ρt ). Then the Markov process satisfies the standard-current property if ρt = Pt and
(for f and g real) jt (f, g) is equal to

Jt (f, g) = 2

h̄
Im〈�t |f̂ H ĝ|�t 〉, (116)

or, in other words, if twice the anti-symmetric part of its backward generator Lt agrees with
the operator corresponding to Jt as given by (Jt f, g) = Jt (f, g), 2AntiLt = Jt . The minimal
process is then the standard-current process that has, in a suitable sense, the smallest amount
of randomness.

Let us consider some examples. The diffusion process with generator L given below
(and for ρ = P) has the standard-current property (in fact, because its ‘current velocity’ [26]
is v) for the Schrödinger Hamiltonian (3) but is not minimal,

L ρ = λ

2
�ρ − div(ρṽ), with ṽ := v +

λ

2
∇(log|�|2) (117)

where λ is any positive constant (the diffusion constant) and v is the Bohmian velocity (1);
this process was already considered in [24, 10]. Note that Nelson’s stochastic mechanics
[26] corresponds to λ = h̄. It is obvious without any mathematical analysis that the smallest
amount of stochasticity corresponds to the absence of diffusion, λ = 0, which yields Bohmian
mechanics. Processes like the diffusion (117) for λ > 0 seem less natural for the fundamental
evolution law of a physical theory since they involve greater mathematical complexity than is
needed for a straightforward association of a process with H and �. Examples of processes that
do not have the standard-current property, for the Schrödinger Hamiltonian (3), are provided
by the alternative velocity formulae considered by Deotto and Ghirardi [12]; one can say that
their current is not the one suggested by H and �.

We return to the general discussion of the minimal process. As we have already indicated,
when, for a standard-current process, we view J as well as its backward generator L as operators
on L2(Q, P), then 1

2 J is the anti-symmetric (skew-adjoint) part of L; thus, only the symmetric
(self-adjoint) part of L remains at our disposal. Since one of the properties of a backward
generator is L1 = 0, the first possibility L̃ for L that may satisfy the formal criteria for being
a backward generator is L̃f = 1

2 Jf − (
1
2 J1

)
f . When P is a PVM, this is also the operator

we obtain by applying, to an arbitrary quantum Hamiltonian H, the formula (32) for what we
called the minimal free generator, which we repeat here for convenience:

L̃f (q) = Re
〈�|P(dq) i

h̄
[H, f̂ ]|�〉

〈�|P(dq)|�〉 . (118)
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Whereas this formula merely provided an alternative definition of the free process in
section 2.9, it now plays a different role: a step towards obtaining the minimal process from
the Hamiltonian H. As we have pointed out in section 2.9, L̃ is also an obvious naive guess for
the backward generator L, quite independent of equivariance or the current J, since i

h̄
[H, f̂ ]

is the time derivative of f̂ . Moreover, it manifestly satisfies L̃1 = 0. For the backward
generator L of a standard-current process we must have, when P is a PVM, that L = L̃ + S

where S is a symmetric operator and S1 = 0. For the minimal process, we have to choose S
as small as possible—while keeping S symmetric and L a backward generator.

Suppose P is a PVM. Observe then that if H is a differential operator (as H0 often is)
of the kind considered in section 2.9, L̃ is itself a backward generator, so that S = 0 is a
possible, and in fact the smallest, choice. If H is an integral operator, what keeps L̃, an integral
operator as well, from being a backward generator is that the off-diagonal part of its P-kernel
(q, L̃q ′) = P(q)L̃(q, q ′) = 1

h̄
Im〈�|q〉〈q|H |q ′〉〈q ′|�〉 may assume negative values whereas

the off-diagonal part of the P-kernel of L, (q, Lq ′) = P(q)σ (q|q ′), cannot be negative. The
smallest possible choice of S has as off-diagonal elements what is needed to compensate
the negative values, and this leads to the minimal jump process, as described in section 5.2.
The diagonal part contains only what is needed to ensure that S1 = 0. For H of the form
H0 +HI , the role of S is again to compensate negative values off the diagonal, and the minimal
process has velocities determined by H0 via (32) and jump rates determined by HI via (29).

In any case, the backward generator of the minimal process is the one closest, in a suitable
sense, to (118). This formula may thus be regarded as containing the essential structure of L,
for the deterministic as well as for the jump part of the process.

Another approach towards a general notion of minimal process may be to approximate
H by Hilbert–Schmidt operators Hn, with which are associated, according to the results of
sections 4.2.1 and 4.2.4 of [15], minimal jump processes Qn, and take the limit n → ∞
of the processes Qn. This leads to a number of mathematical questions, such as under what
conditions on H,�,P and Hn does a limiting process exist, and is it independent of the choice
of the approximating sequence Hn?

6. Remarks

6.1. Symmetries

Process additivity preserves symmetries, in the sense that the process generated by
∑

L (i)

shares the symmetries respected by all of the building blocks L (i). This section elaborates
on this statement, and the following ones: the minimal jump rates (29) and the minimal free
generator (32) share the symmetries of the Hamiltonians with which they are associated.
The ‘second quantization’ algorithm preserves the symmetries respected by the one-particle
process.

Here are some desirable symmetries that may serve as examples: space translations,
rotations and inversion, time translations and reversal, Galilean or Lorentz boosts, global
change of phase � → eiθ�, relabelling of particles16, and gauge transformations.

We focus first on symmetries that do not involve time in any way, such as rotation
symmetry. In this case, a symmetry group G acts onQ, so that to every g ∈ G there corresponds
a mapping ϕg : Q → Q. In addition, G acts on H through a projective unitary (or anti-
unitary) representation, so that to every g ∈ G there corresponds a unitary (or anti-unitary)

16 This may mean two things: changing the artificial labels given to identical particles, or exchanging two species of
particles.
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operator Ug . Then the theory is G-invariant if both the wavefunction dynamics and the process
on Q are, i.e., if H is G-invariant,

U−1
g HUg = H, (119)

and

ϕg
(
Q�

t

) = Q
Ug�
t (120)

in distribution on path space. A necessary condition for (120) is that the ‘configuration
observable’ transforms like the configuration, in the sense that

U−1
g P (·)Ug = ϕg

∗P(·), (121)

where ϕ∗ denotes the action of ϕ on measures. Without (121), (120) would already fail at time
t = 0, no matter what the generator is. Given (121), (120) is equivalent to the G-invariance of
the generator:

ϕg
∗L �ϕg−1

∗ = L Ug�. (122)

Since ϕ
g
∗ is a linear operator, it follows immediately that the sum of G-invariant generators is

again G-invariant. The minimal jump process, when it exists, is G-invariant, as follows from
the fact that ϕ

g
∗σ�(dq|ϕg(q ′)) = σUg�(dq|q ′), which can be seen by inspecting the jump rate

formula (29). The minimal free generator (35) satisfies (122) by virtue of (119) and (121).
‘Second quantization’ provides G-actions on 
Q(1) and F = 
H (1) from given actions on
Q(1) and H (1); (119), (121) and (122) are inherited from their 1-particle versions.

Time-translation invariance is particularly simple. Consider generators L (i)
� which do not

depend on time except through their dependence on �. Then the same is true of
∑

L (i). The
same can be said of the ‘second quantized’ generator, and, provided H is time-independent, of
the minimal jump rates (29) and the minimal free generator (35).

Next we consider time reversal. It is represented on H by an anti-unitary operator T, i.e.,
an anti-linear operator such that 〈T 	|T �〉 is the conjugate of 〈	|�〉. We assume that the
Hamiltonian is reversible, T HT −1 = H . Then the reversibility of the theory means that

Q
�0−t = Q

T �0
t (123)

in distribution on path space, where the superscript should be understood as indicating the
state vector at t = 0. The necessary condition analogous to (121) reads

T −1P(·)T = P(·), (124)

and given (124), equation (123) is equivalent to the T-invariance of the generator,

L � = LT �, or L� = LT �, (125)

where L and L denote the forward and backward generator of the time-reversed process. L

can be computed from L, for an equivariant Markov process, according to17

Lf = L†f − (L†1)f (126)

where † denotes the adjoint operator on L2(Q, P), with P given by (24). Since L is linear
in L, condition (125) is preserved when adding (forward or backward) generators; it is also

17 To make this formula plausible, it may be helpful to note that the second term on the right-hand side is just the
correction needed to ensure that L1 = 0, a necessary condition for being a backward generator. If P were stationary,
the second term on the right-hand side would vanish.

Here is a derivation of (126): let (f, g) = ∫
q∈Q f (q)g(q)P(dq) be the scalar product in L2(Q, P). It follows from

the definition (8) of L that

(g, Lf ) = lim
t↘0

1

t
E(g(Q0)f (Qt ) − g(Q0)f (Q0)).
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preserved under ‘second quantization’. For a pure jump process, (125) boils down to

σ�(dq|q ′)〈�|P(dq ′)|�〉 = σT �(dq ′|q)〈�|P(dq)|�〉, (127)

which is satisfied for the minimal jump rates, by inspection of (29). The minimal free generator
(32) changes sign when replacing � by T �, which means the velocity changes sign, as it
should under time reversal (see section 5.1).

Invariance under Galilean boosts is a more involved story, and as it is not considered
as fundamental in physics in any case, we omit it here. Lorentz boosts are even trickier,
since for more than just one particle, they even fail to map (simultaneous) configurations into
(simultaneous) configurations. As a result, the problem of Lorentz invariance belongs in an
altogether different league, which shall not be entered here.

6.2. On the notion of reversibility

It may appear, and it is in fact a widespread belief, that stochasticity is incompatible with time
reversibility. We naturally view the past as fixed, and the future, in a stochastic theory, as free,
determined only by innovations. Even Bell expressed such a belief [5, p 177]. However, from
the proper perspective the conflict disappears, and this perspective is to consider the path space
(of the universe) and the probability measure thereon. If t �→ Qt is a history of a universe
governed by a Bell-type QFT, then its time reverse, t �→ Q−t , is again a possible path of this
Bell-type QFT, though corresponding to a different initial state vector T � instead of �, with
T the time-reversal operator as discussed in section 6.1. More than this, the distribution of
the reversed path t �→ Q−t coincides with the probability measure on path space arising from
T �.18

It may also be helpful to think of how the situation appears when viewed from outside
spacetime: then the path Qt corresponds to the decoration of spacetime with a pattern of world
lines, and this pattern is random with respect to a probability measure on what corresponds to
path space, namely the space of all possible decorations of spacetime. Then the time reversal
is a mere reflection, and for a theory to be time reversible means the same as being invariant
under this reflection: that we could have had as well the reflected probability measure, provided
we had started with T � instead of �.

To sum up, we would like to convey that the sense of reversibility for Markov processes
indeed matches the sense of reversibility that one should expect from a physical theory.

6.3. Heisenberg picture

In (24), we have applied the Schrödinger picture, according to which the state vector evolves
while the operators remain fixed. Equation (24) and the reasoning following it can as well

Correspondingly, L is characterized (for f and g real) by

(g, Lf ) = lim
t↘0

1

t
E(g(Q0)f (Q−t ) − g(Q0)f (Q0))

= lim
t↘0

1

t
E(g(Q0)f (Q−t ) − g(Q−t )f (Q−t )) + lim

t↘0

1

t
E(g(Q−t )f (Q−t ) − g(Q0)f (Q0))

= (f, Lg) −
∫

q∈Q
g(q)f (q)Ṗ(dq)

(10)= (Lg, f ) − (L(gf ), 1) = (g, L†f ) − (fg, L†1),

which amounts to (126).
18 We can be more precise about the meaning of the measure on path space: as in Bohmian mechanics [19], its role ‘is
precisely to permit definition of the word ‘typical” [5, p 129]. Consequently, the meaning of the reversibility property
of the measures we just mentioned is that the time reverse of a history that is typical with respect to �, is typical with
respect to T �.
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be translated to the Heisenberg picture where the state vector � is regarded as fixed and the
operators Pt(·) as evolving. Thus, we could equivalently write

Pt (dq) = 〈�|Pt(dq)|�〉
instead of (24). Similarly, H0 and HI become time dependent while their sum is constant. We
often use an ambiguous notation like 〈�|P(dq)|�〉 and formula (29) since the formulae are
equally valid in both pictures (and, for that matter, in the interaction picture).

Like the jump rate formula (29), the formula (32) for the minimal free generator is equally
valid in the Heisenberg picture.

We further remark that in the Heisenberg picture, the following nice equation holds for a
pure jump process with minimal rates when P is a PVM,

Prob{Qt+dt ∈ dq,Qt ∈ dq ′} = 〈�|{Pt+dt (dq), Pt (dq ′)}|�〉+ (128)

for dq ∩dq ′ = ∅, where { , } on the right-hand side means the anti-commutator. The similarity
to the one-time distribution formula

Prob{Qt ∈ dq} = 〈�|Pt(dq)|�〉
is striking. Specifying the two-time distribution for infinitesimal time differences is a way of
characterizing a Markov process, equivalent to specifying the (forward or backward) generator
and the one-time distribution. Thus, for a PVM P (128) provides another formula for the
minimal jump rates (29). A similar formula for the process generated by the minimal free
generator (32) is E

(
g(Qt)f (Qt+dt )

) = 1
2 〈�|{ĝt , f̂ t+dt }|�〉.

6.4. Examples of process additivity

Among different concrete realizations of Bohmian mechanics we find numerous examples of
process additivity (and, remarkably, no example violating it):

• The Hamiltonian for n non-interacting particles is the sum of the Hamiltonians for the
individual particles, and it is easy to see that this corresponds to the decomposition of the
vector field on R

3n, which defines Bohmian mechanics for the n-particle system, into its
n components parallel to the n factors R

3. As already mentioned, sums of generators for
deterministic processes amount to sums of the defining vector fields.

Moreover, the vector field for each particle is essentially the Bohmian one-particle
law. To point out that this is a nontrivial fact, we mention that this is not so for the
alternative velocity formula (10.2) in [12] considered by Deotto and Ghirardi, for which
the velocity of the ith particle differs from the one-particle law. So Bohmian mechanics
of n particles can be viewed as built from n copies of the one-particle version, in fact by
the ‘second quantization’ algorithm of section 4.2.

• The vector field of Bohmian mechanics for a single spinless particle may also be seen
as arising in this way. If a Hamiltonian H = −X2 is the negative square of an
(incompressible) vector field (regarded as a first-order differential operator) X = a(x) · ∇
on R

3 (with ∇ · a = 0 ensuring formal self-adjointness of the square), then the simplest
equivariant process associated with H is given by the velocity vector field

v = 2

h̄
Im

a · ∇�

�
a.

The corresponding backward generator is L = 2
h̄

Im
(

X�
�

)
X. Now − h̄2

2 � = −∑
α Xα

2

is the sum of three negative squares of vector fields Xα = h̄√
2
∂/∂xα corresponding to the

individual degrees of freedom. The associated Bohm velocity is the sum of the velocities
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corresponding to the squares. So Bohmian mechanics in three dimensions can be viewed
as built of three copies of the one-dimensional version. To point out that this is a nontrivial
fact, we mention that this is not true, e.g., of the velocity formulae (10.1) and (10.2) in
[12], which do not make sense in dimensions other than 3.

• If we add an interaction potential V to − h̄2

2 �, the Bohm velocity is the appropriate sum,
since the operator V is associated with the trivial motion v = 0.

• We may also include an external vector potential A(x, t) in the Schrödinger equation, that
is, replace − h̄2

2 � = − h̄2

2 ∇2 by − h̄2

2

(∇ +i e
h̄
A(x, t)

)2 = − h̄2

2 �− h̄2

2

(
i e
h̄
∇ · A+i e

h̄
A · ∇)

+
e2

2 A2. The sum of the associated velocities, namely

h̄ Im
�∗∇�

�∗�
+ eA + 0

equals the velocity one obtains directly, h̄ Im �∗(∇ + i e
h̄
A

)
�/�∗�.

• In the Bohm–Dirac theory (31), however, one can include an external gauge connection
Aµ(x, t) in the Dirac equation without changing the velocity formula. That conforms
with process additivity because the operator (γ 0)−1γ µAµ = A0 + α · A is associated
(termwise) with v = 0.

• In the Dirac Hamiltonian H = −ich̄α ·∇ + βmc2, the first term corresponds to the Bohm–
Dirac velocity (31), whereas the second term corresponds to v = 0; as a consequence, the
Bohm–Dirac velocity does not depend on the mass. Moreover, the three components of
the Bohm–Dirac velocity are each equivariant with respect to the corresponding derivative
term in H.

In addition, we point out the cases of process additivity in the ‘second quantization’
algorithm and minimal jump processes.

The ‘second quantized’ generator 
L (1) as constructed in section 4.2 provides an example
of process additivity (or may be viewed as an application of process additivity),

LH0,� =
∞∑

n=0

L
H

(n)
0 ,�(n) ,

where the generators in the sum correspond to motions in the respective different sectors of Q.
Suppose we regard the particles as ordered, Q = (Q1, . . . ,QN). Then another case of

process additivity becomes visible,

H
(N)
0 =

N∑
i=1

hi

where hi is the one-particle Hamiltonian acting on the ith particle. Correspondingly,

L
H

(N)
0

=
N∑

i=1

Li

where Li is equivariant with respect to hi . This applies not only to Bohmian mechanics
(as described earlier in this section), but generally to the ‘second quantization’ procedure as
described in section 4.2. We also note that the ‘second quantization’ algorithm presented in
section 4.2 preserves process additivity in the sense that 


(
L (1)

1 + L (1)
2

) = 
L (1)
1 + 
L (1)

2

while 

(
H

(1)
1 + H

(1)
2

) = 
H
(1)
1 + 
H

(1)
2 .

We now turn to process additivity among minimal jump processes.
A jump process generated by a sum need not be a minimal jump process even when

its constituents are. But under certain conditions it is. Two such cases are the ‘direct sum’
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and ‘tensor product’ processes constructed in sections 4.2.1 and 4.2.2: H = ⊕
n H (n) with

Q = ⋃
n Q(n) and H = ⊕

n H (n), and H = H [1]⊗· · ·⊗H [N] withQ = Q[1]×· · ·×Q[N] and
H = ∑

i 1 ⊗· · ·⊗ H [i] ⊗· · ·⊗ 1, with L = ∑
Li where Li acts nontrivially, in an obvious

sense, only on Q(i) or on Q[i]. These are special cases of the general fact that minimality is
compatible with additivity whenever the addends of the Hamiltonian correspond to different
sorts of jumps. That can be most easily understood in the case of a PVM corresponding to an
orthonormal basis {|q〉 : q ∈ Q} of H : suppose H = H1 + H2 and for every pair q, q ′ either
〈q|H1|q ′〉 = 0 or 〈q|H2|q ′〉 = 0. Then σ = σ1 + σ2. The corresponding condition in the
POVM context is that the kernels of H1 and H2 have disjoint supports. When H is naturally
given as a sum this condition would be expected to be satisfied.

Finally, we remark that the minimal free generator L = L H as defined in (35) is additive
in H.

6.5. Second quantization of a minimal jump process

We note that the ‘second quantization’ of a minimal jump process associated with a PVM P (1),
as described in section 4.2, is the minimal jump process associated with the second-quantized
Hamiltonian; this is a consequence of the observation that Li generates the minimal jump
process for Hi in this case. This fact is probably physically irrelevant but it is mathematically
nice.

6.6. Global existence question

The rates σt and velocities vt , together with Pt , define the process Qt associated with H,P and
�, which can be constructed along the lines of section 2.3. However, the rigorous existence
of this process, like the global existence of solutions for an ordinary differential equation,
is no trivial matter. See section 4.3 of [15] for a discussion of what must be controlled in
order to establish the global existence of the process, and [20] for an example of such a global
existence proof.

6.7. POVM versus PVM

As we have already remarked in footnote 8, every POVM P is related to a PVM Pext, the
Naimark extension, on a larger Hilbert space Hext according to P(·) = P+Pext(·)I with P+ the
projection Hext → H and I the inclusion H → Hext. This fact allows a second perspective
on P , and sometimes creates a certain ambiguity as to which process is the suitable one for a
Bell-type QFT, as follows. At several places in this paper, we have described considerations
leading to and methods for defining Markov processes, in particular minimal jump rates (29)
and the minimal free generator (32); these considerations and methods could be applied using
either Hext and Pext or H and P . One would insist that the state vector � must lie in H , the
space of physical states, but even then one might arrive at different processes starting from P

or Pext. To obtain a process from Pext requires, of course, that we have a Hamiltonian on Hext,
while H is defined on H ; such a Hamiltonian, however, can easily be constructed from H by
setting Hext = IHP+.

In some cases, the Naimark extension does not lead to an ambiguity. This is the case
for the jump rate formula (29), since for � ∈ H , 〈�|Pext(dq)|�〉 = 〈�|P(dq)|�〉 and
〈�|Pext(dq)HextPext(dq ′)|�〉 = 〈�|P(dq)HP (dq ′)|�〉. This fact suggests that, generally,
the minimal process arising from Hext and Pext is the same as that arising from H and P .
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The situation is different, however, when H is defined on Hext to begin with, and different
from Hext. This is the case with the free Dirac operator h0, defined as a differential operator
on L2(R3, C

4), which differs from P+h0P+. When we obtained in section 2.9 the Bohm–
Dirac motion (31) from the formula (32) for the minimal free generator, we used h0 and
Pext. In contrast, the restriction of h0 to the positive energy subspace, or equivalently P+h0P+,
possesses a kernel; more precisely, it is a convolution operator S+ � (h0S+)� in the notation of
section 3.3, and thus corresponds to jumps. The associated minimal process on R

3 presumably
makes infinitely many jumps in every finite time interval, similar to the example of [15],
section 3.5.

Thus, there are two processes to choose between, the Bohm–Dirac motion and the minimal
process for P+h0P+. Both are equivariant, and thus it is arguably impossible to decide
empirically which one is right. In our example theory in section 3.3, we chose the simpler,
deterministic one. But we leave to future work the discussion of which is more likely relevant
to physics, and why.

6.8. The role of field operators

The Bell-type QFTs with which we have been concerned in this paper are models describing
the behaviour of particles moving in physical 3-space, not of fields on 3-space. We have
been concerned here mainly with a particle ontology, not a field ontology. This focus may be
surprising at first: almost by definition, it would seem that QFT deals with fields, and not with
particles. Consider only the occurrence (and prominence) of field operators in QFT!

But there is less to this than might be expected. The field operators do not function as
observables in QFT. It is far from clear how to actually ‘observe’ them, and even if this could
somehow, in some sense, be done, it is important to bear in mind that the standard predictions
of QFT are grounded in the particle representation, not the field representation: experiments in
high-energy physics are scattering experiments, in which what is observed is the asymptotic
motion of the outgoing particles. Moreover, for Fermi fields—the matter fields—the field as
a whole (at a given time) could not possibly be observable, since Fermi fields anti-commute,
rather than commute, at space-like separation. One should be careful here not to be taken in by
the attitude widespread in quantum theory of intuitively regarding the operators as ‘quantities,’
as if they represented something ‘out there’ in the real world; see [9] for a critique of this
attitude.

So let us focus on the role of the field operators in QFT. Their role is to relate abstract
Hilbert space to spacetime: the field operators are attached to spacetime points, unlike the
quantum states �, which are usually regarded not as functions but as abstract vectors. In
orthodox quantum field theory the field operators are an effective device for the specification
of Hamiltonians having good spacetime properties. For our purposes here, what is critical is
the connection between field operators and POVMs.

Throughout this paper, the connection between Hilbert space and the particle positions in
physical space has been made through the POVM P , and through it alone. We now wish to
emphasize that the field operators are closely related to P , and indeed that field operators are
just what is needed for efficiently defining a POVM P on 
R

3.
This connection is made through number operators N(R),R ⊆ R

3. These define a
number-operator-valued measure (NOVM) N(·) on R

3, an ‘unnormalized POVM’ (N(R3) is
usually not the identity operator and N(R) is usually an unbounded positive operator) for which
the values N(R) commute and are number operators: spectrum(N(R)) ⊆ {0, 1, 2, 3, . . .}.
(The basic difference, then, between a NOVM and a PVM is that the spectrum of the positive
operators is {0, 1, 2, 3, . . .} rather than just {0, 1}.)
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There is an obvious one-to-one relation between NOVMs N(·) on R
3 and PVMs P on


R
3, given by

N(R) =
∫

q∈
R
3
nR(q)P (dq) (129)

where nR(q) = #(q ∩ R) is the number function on 
R
3 for the region R. Since (129) is the

spectral decomposition of the commuting family N(R), this correspondence is one-to-one.
(Note that the joint spectrum of the commuting family N(R) is the set of non-negative-integer-
valued measures nR on R

3, one of the definitions of 
R
3 given in section 2.8.)

The moral is that a NOVM on R
3 is just a different way of speaking about a PVM P

on Q = 
R
3. All other POVMs arise from PVMs by restriction to a subspace (Naimark’s

theorem [11]). An easy way to obtain a NOVM N starts with setting

N(R) =
∫

R

φ∗(x)φ(x) d3x (130)

for suitable operators φ(x). An easy way to ensure that the N(R) commute is to require that
the operators φ(x) commute or anti-commute with each other and the adjoints φ∗(x′) for
x′ �= x. An easy way to ensure that the N(R) have non-negative integer eigenvalues is to
require that

[φ(x), φ∗(x′)]± = δ(x − x′), (131)

where [ , ]± is the (anti-)commutator, and that there is a cyclic vacuum state |0〉 ∈ H for
which φ(x)|0〉 = 0. Relations (131) (together with the (anti-)commutation of the φs) are of
course just the usual canonical (anti-)commutation relations that field operators are required
to satisfy.

Moreover, in gauge theories the connection between matter field φ and the NOVM is
perhaps even more compelling. Consider a gauge theory with internal state space V , equipped
with the inner product 〈〈·|·〉〉. Then, given x ∈ R

3, the matter field φ(x) should formally
be regarded as a linear functional V → O(H ), ξ �→ φξ (x), from the internal state space
to operators on H , with φ∗

ξ∗(x) = (φξ (x))∗ a linear function V ∗ → O(H ) on the dual of
V . Equation (131) then becomes [φξ (x), φ∗

η∗(x′)] = δ(x − x′)〈〈η|ξ 〉〉. Thus the simplest
gauge-invariant object associated with φ is the NOVM (130), with the integrand understood
as the contraction of the tensor V × V ∗ → O(H ), (ξ, η) �→ φ∗

η(x)φξ (x).
Hence, not only does the notion of particle not conflict with the prominence of field

operators (see sections 3.1 and 3.3 for explicit examples), but field operators have a natural
place in a theory whose ultimate goal it is to govern the motion of particles. One of their
important roles is to define the POVM P that relates Hilbert space to configuration space.
Quantum theory of fields or quantum theory of particles? A theory of particle motion exploiting
field operators!

7. Conclusions

The essential point of this paper is that there is a direct and natural way of understanding QFT
as a theory about moving particles, an idea pioneered, in the realm of non-relativistic quantum
mechanics, by de Broglie and Bohm. We leave open, however, three considerable gaps: the
question of the process associated with the Klein–Gordon operator, the problem of removing
cut-offs and the issue of Lorentz invariance.
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